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Inference and Estimation in Panel BDV Models

Abstract

I propose a hypothesis test that is robust to the presence of weak instruments in binary

outcome panel data. The test relies on a conditional maximum likelihood procedure, the

conditional logit, to consistently estimate reduced-form parameters. Based on a distance

function that relates reduced- and structural-form parameters, the test has the correct size

regardless of instrument strength while standard Wald tests over-reject by up to 100% when

instruments are weak. I investigate the findings of Nunn and Qian (2014) with the proposed

test and find that claimed statistical significance vanishes at the 1% and 5% significance

levels. Next, I show that quasi-maximum likelihood estimation (QMLE) ignoring second-

stage heteroskedasticity yields inconsistent parameter and average marginal effect (AME)

estimators in panel data. This is significant because QMLE is often employed in stud-

ies estimating heteroskedasticity or cluster robust standard errors. When instruments are

weak, AME percentage bias can reach 650% in panels. Moreover, AME percentage bias

in panels generally increases by a factor of 2-20 when heteroskedastic errors are assumed

homoskedastic.
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1 INTRODUCTION Inference and Estimation in Panel BDV Models

1 Introduction

The core objective in much of modern applied economics research is quantifying causal rela-

tionships from noisy observational data. The doyen of what Angrist and Pischke (2010) call

economics’ “credibility revolution” is the method of instrumental variables (IV), which is ubiq-

uitous in applied research for its ease of use and intuitive interpretation.

An increasingly popular setting for the IV method is binary outcome panel data, which is

used to analyze questions ranging from what determines labour supply (Frijters et al., 2009;

Fernández et al., 2014) to whether food aid causes civil war (Miguel et al., 2004; Nunn and

Qian, 2014). However, two main problems arise in this setting. The first is that standard infer-

ence performs poorly when the instrument is weakly correlated with the endogenous variable

of interest, known as the “weak instruments problem”. Accordingly, determining whether and

how reliable inference can be conducted in IV models of binary outcome panel data when instru-

ments are weak is critical for future research. The second is that disregarding heteroskedasticity,

now commonplace in applied research estimating so-called robust standard errors, might distort

parameter and marginal effect estimates. If it does, then researchers must implement new esti-

mation techniques in binary outcome panel data to ensure confidence in their results.

I present three contributions addressing these problems in binary outcome panel data. First,

I propose a test robust to the presence of weak instruments in binary outcome panel data. Sec-

ond, I show that estimating parameters by disregarding heteroskedasiticity can yield inconsistent

parameter estimators even when instruments are strong. And third, I demonstrate through sim-

ulations that procedures to estimate average marginal effects (AMEs) can be severely biased in

binary outcome panel data regardless of instrument strength.

The weak instruments problem for linear models is well-studied in the literature, generat-

ing non-Normal estimator distributions in environments with continuous dependent variables

(Andrews et al., 2019). The literature, hence, seeks practical methods to either detect when

instruments are weak or conduct valid inference despite, or robust to, the presence of weak in-

struments. The treatment of the problem in applied work typically relies on the former, where

rules of thumb such as the first-stage 𝐹 -statistic exceeding 10 (Staiger and Stock, 1997) or a two-

stage least squares worst-case bias exceeding 10% of the worst-case ordinary least squares (OLS)

bias (Stock and Yogo, 2005) are commonly cited. Although these assume homoskedastic errors,

Olea and Pflueger (2013) provide a robust test for weak instruments with heteroskedasticity.

The robust branch, meanwhile, seeks valid hypothesis tests regardless of instrument strength.
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1 INTRODUCTION Inference and Estimation in Panel BDV Models

These generally follow the logic of Anderson-Rubin (AR) tests where the AR statistic follows a

chi-squared distribution regardless of instrument strength (Anderson and Rubin, 1949; Andrews

et al., 2019).

When outcomes are binary, researchers often apply nonlinear regression tools such as logit or

probit to restrict fitted values, which represent the estimated probability of the outcome, between

0 and 1. However, standard asymptotic analysis employing first-order Taylor or mean-value ex-

pansions are no longer valid in nonlinear models (Frazier et al., 2021). Frazier et al. (2021) also

find that the correct measure of instrument strength in nonlinear models depends on a density

function. As the commonly cited rules of thumb were derived for linear models, they ignore this

density multiplier. The rules of thumb, then, are not a reliable measure of instrument strength.

As tests developed for continuous outcomes cannot be immediately applied to binary variables,

estimation and inference methods currently used in studies with weak instruments must be re-

considered.

Magnusson (2010) develops a test robust to weak instruments in binary choice models using

a minimum distance (MD) principle. The idea is to perform inference on a link function that is

a metric between structural- and reduced-form parameters rather than directly on the parameter

of interest. This test is of the correct size and generally dominates other tests in terms of power.

Magnusson (2010)’s analysis lends itself to a cross sections environment because it does not

address individual heterogeneity. My first contribution is extending Magnusson (2010)’s test to

a panel data environment.

Panel data are of particular interest for both empirical and theoretical reasons. Empirically,

panel data are powerful because, by observing individuals over time, the researcher can con-

trol for unobserved individual heterogeneity, called FEs. In linear models, including individual

level dummy variables or implementing a first-differencing (FD) procedure controls for FEs.

However, a FD approach cannot control for FEs in nonlinear models and cannot be applied to

the binary choice environment. Meanwhile, introducing individual dummies to control for FEs

causes the incidental parameters problem (Lancaster, 2000). The incidental parameters problem

complicates current robust methods and inference techniques in panel data because it causes pa-

rameter estimators to be inconsistent. Extending the robust test to panel data is therefore a

nontrivial task and constitutes a significant contribution to theoretical and applied literatures

alike.

To implement the robust test in nonlinear panel data IV models, I propose an estimation
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1 INTRODUCTION Inference and Estimation in Panel BDV Models

procedure that relies on a control function to resolve endogeneity. I implement a conditional logit

(CL) to consistently estimate reduced-form parameters which avoids the incidental parameters

problem. I show that this test has the correct size regardless of instrument strength through

Monte Carlo simulations of the basic one endogenous variable, one instrument model. I also

provide the functional form of the robust test in the general case. I illustrate the importance

of the test by reinvestigating the central specifications in Nunn and Qian (2014). I find that

confidence intervals computed with the robust test are up 6 times wider than those reported by

standard inference.

Motivated by the convention in applied research of estimating heteroskedasticity or cluster

robust standard errors using linear probability models (LPMs), I investigate how heteroskedas-

tic errors affect estimator consistency for panel data IV models. I find that heteroskedasticity

affects estimation differently depending on which stage it enters the IV model. If it enters purely

via the first-stage, quasi-maximum likelihood estimation (QMLE) that assumes homoskedas-

tic first-stage errors is consistent. However, heteroskedastic second-stage errors makes QMLE

inconsistent regardless of instrument strength. Demonstrating that QMLE yields inconsistent

estimators is my second contribution.

I illustrate these results via Monte Carlo simulations which show that estimators produced by

logit, conditional logit, and LPMs that ignore heteroskedasticity are inconsistent. Researchers,

then, must assume that heteroskedasticity exists exclusively in the first-stage while second-stage

errors are conditionally homoskedastic to consistently estimate parameters. These findings di-

rectly challenge the practice of disregarding heteroskedasticity when estimating parameters in

binary outcome panel data.

As applied research ultimately seeks to quantify relationships between outcome and explana-

tory variables, I analyse how misspecified heteroskedasticity affects average marginal effects

(AMEs). This is of critical importance since AMEs are the primary object of interest in most

applied work and are usually relied on to interpret results and evaluate policy interventions.

For cross sections, I find that ignoring heteroskedasticity yields consistent AME estimates with

two-group heteroskedasticity while they can be inconsistent with individual heteroskedasticity.

Given these findings, I consider how two-group heteroskedasticity might contaminate AMEs

in panel data. I find that misspecified heteroskedasticity generally increases percentage bias

in AME estimates by a factor of 2-20, although there are cases where AMEs estimated with

misspecified errors exhibit lower percentage bias.
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2 ROBUST INFERENCE Inference and Estimation in Panel BDV Models

I also study inconsistency and bias for AMEs estimated from CL, standard logit, and LPMs

under different assumptions about the FEs. When instruments are strong, percentage bias in

the AMEs across all models goes to 0 as the time dimension lengthens. However, some AME

estimation procedures can be 20-40% biased depending on how FEs are generated. When in-

struments are weak, AME percentage bias can increase up to 660% for nonlinear models like

CL and standard logit. Percentage bias can be up to 2,300% when estimated from LPMs. In-

deed, a CL model assuming full knowledge of true FEs and first-stage errors can feature AME

percentage bias up to 12% in the presence of weak instruments.

Simulations demonstrating that AMEs estimated by ignoring heteroskedasticity can be severely

biased is my third contribution to the literature. These results are significant since economists

typically rely on AMEs to determine the success or failure of government policies such as hu-

manitarian aid.

The outline of the thesis is as follows: Section 2 provides an overview of the estimation

problem, the CL likelihood, and develops and verifies the robust test in panel data through Monte

Carlo simulations. Section 3 discusses parameter estimation with heteroskedastic errors and

Section 4 illustrates implications for AME estimation via Monte Carlo simulations. Section 5

provides an application of these methods to estimating the effect of food aid on civil conflict

incidence as analysed in Nunn and Qian (2014). Section 6 concludes and discusses avenues for

further research, while necessary proofs and further simulations are provided in Appendix A

and Appendix B, respectively.

2 Robust Inference

Although well-studied in linear models, the problem of weak instruments in nonlinear models

receives relatively little attention across theoretical and applied literatures. Despite this, applied

economists apply traditional methods to both detect weak instruments and conduct inference on

parameters of weakly identified endogenous variables. To address this, I outline a hypothesis

test robust to the presence of weak instruments in binary dependent variable (BDV) models and

demonstrate its correct size in simulated panel data.
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2 ROBUST INFERENCE Inference and Estimation in Panel BDV Models

2.1 Model and Setup

I wish to conduct inference on the following one endogenous variable, one instrument class of

panel models with structural form

𝑥𝑖𝑡 = 𝑧𝑖𝑡𝜉 + 𝑏𝑖 + 𝑣𝑖𝑡 (2.1)

𝑦∗
𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝑢𝑖𝑡, where 𝑢𝑖𝑡 = 𝜌𝑣𝑖𝑡 + 𝜀𝑖𝑡 (2.2)

Equation (2.1) and (2.2) are called the first and second-stage equations, respectively. Here, 𝑥𝑖𝑡

is the endogenous explanatory variable, 𝛽 is the parameter of interest, 𝜌 describes the degree of

endogeneity, 𝑢𝑖𝑡 is the second stage error-term, 𝑧𝑖𝑡 is the instrument, 𝜉 is the instrument parameter,

and 𝑣𝑖𝑡 is a first-stage error term, for individual 𝑖 in time 𝑡. As 𝑥𝑖𝑡 is endogenous it must be

correlated with 𝑢𝑖𝑡. Assuming the exclusion restriction, this implies that 𝑥𝑖𝑡 must be correlated

with 𝑢𝑖𝑡 via 𝑣𝑖𝑡. This observation motivates a control function, so that 𝑢𝑖𝑡 = 𝜌𝑣𝑖𝑡 + 𝜀𝑖𝑡, for

0 < 𝜌 < 1 and 𝜀𝑖𝑡 is an independent second-stage random error term. The general model with

multiple instruments, endogenous variables, and control variables is in Appendix A.2. Equation

(2.1) and (2.2) have reduced-form

𝑥𝑖𝑡 = 𝑧𝑖𝑡𝜉 + 𝑏𝑖 + 𝑣𝑖𝑡 (2.3)

𝑦∗
𝑖𝑡 = 𝑧𝑖𝑡𝛿𝑧 + 𝑣𝑖𝑡𝛿𝑣 + 𝜅𝑖 + 𝜀𝑖𝑡 (2.4)

where 𝛿𝑧 = 𝜉𝛽, 𝛿𝑣 = 𝛽 + 𝜌, and 𝜅𝑖 = 𝑐𝑖 + 𝛽𝑏𝑖. I assume that 𝑣𝑖𝑡 ∼ N(0, 𝜎2
𝑣) and 𝜀𝑖𝑡 has some

distribution with homoskedastic errors. The assumption that 𝑣𝑖𝑡 is Normal can be relaxed, as

shown in subsection 2.4. Define

𝑦𝑖𝑡 =
⎧⎪
⎨
⎪⎩

1 if 𝑦∗
𝑖𝑡 > 0

0 otherwise
(2.5)

and assume that 𝜀𝑖𝑡 follows a Logistic distribution with location 0 and scale parameter 𝑠; that

is, 𝜀𝑖𝑡 ∼ L(0, 𝑠). This implies ℙ(𝑦𝑖𝑡 = 1|𝑥𝑖𝑡, 𝑣𝑖𝑡, 𝑐𝑖) = Λ([𝑥𝑖𝑡𝛽 + 𝜌𝑣𝑖𝑡 + 𝑐𝑖]/𝑠), where Λ(⋅) is the

standard Logistic cumulative distribution function (CDF) which has location 0 and scale 1. The

Logistic CDF is chosen to estimate second-stage reduced-form parameters from Equation (2.4)

via conditional logit likelihood. This likelihood circumvents the incidental parameters problem

and yields consistent estimates of 𝛿𝑧 and 𝛿𝑣, denoted ̂𝛿𝑧 and ̂𝛿𝑣 respectively. Given this setup, I

wish to conduct inference not directly on the endogenous parameter 𝛽, but on the link function

𝑟(𝛿𝑧, 𝛽) = 𝛿𝑧 − 𝜉𝛽.
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2 ROBUST INFERENCE Inference and Estimation in Panel BDV Models

2.2 Conditional Logit

A further discussion of the likelihood to estimate the second-stage in Equation (2.1) and (2.2) is

required before outlining the robust test. I wish to estimate and conduct inference about 𝛽 in the

model described in subsection 2.1 Equation (2.1) and (2.2). Including dummy variables for each

individuals via standard logit yields an inconsistent estimator of 𝛽. Hence, a procedure providing

consistent parameter estimators despite the inclusion of FEs is required. The conditional logit

(CL) is one such procedure which is derived by conditioning on 𝑛𝑖 ≡ ∑𝑇
𝑡=1 𝑦𝑖𝑡, where 0 < 𝑛𝑖 < 𝑇 .

The cases where 𝑛𝑖 = 0 and 𝑛𝑖 = 𝑇 contain no information to estimate 𝛽 and so do not contribute

to the likelihood. To fix ideas, I derive the likelihood for the 𝑇 = 2 case while the 𝑇 -period case

is derived in Appendix A.1. Assume

Assumption 2.1. The idiosyncratic errors 𝜀𝑖𝑡 ∼ L(0, 𝑠), meaning ℙ(𝑦𝑖𝑡 = 1|𝑥𝑖𝑡, 𝑣𝑖𝑡, 𝑐𝑖) =
Λ([𝑥𝑖𝑡𝛽 + 𝜌𝑣𝑖𝑡 + 𝑐𝑖]/𝑠), where Λ(⋅) is the standard Logistic CDF.

Assumption 2.2. The 𝜀𝑖𝑡 are independent of the entire regressor history. That is, ℙ(𝑦𝑖𝑡 =
1|𝑥𝑖, 𝑣𝑖, 𝑐𝑖) = ℙ(𝑦𝑖𝑡 = 1|𝑥𝑖𝑡, 𝑣𝑖𝑡, 𝑐𝑖) where 𝑥𝑖 = [𝑥𝑖1, ..., 𝑥𝑖𝑇 ] and 𝑣𝑖 = [𝑣𝑖1, ..., 𝑣𝑖𝑇 ].

Assumption 2.3. The 𝑦𝑖𝑡 are independent across time conditional on explanatory variables.

That is, ℙ(𝑦𝑖|𝑥𝑖, 𝑣𝑖, 𝑐𝑖) = ∏𝑇
𝑡=1 ℙ(𝑦𝑖𝑡 = 𝑦𝑡|𝑥𝑖𝑡, 𝑣𝑖𝑡, 𝑐𝑖), where 𝑦𝑖 = [𝑦𝑖1, ..., 𝑦𝑖𝑇 ].

Suppose, without loss of generality, that 𝑦𝑖2 = 1. Assumption 2.2 and the Law of Conditional

Probability imply the conditional probability

𝑝𝑖 = ℙ(𝑦𝑖2 = 1|𝑛𝑖 = 1, 𝑥𝑖) = ℙ(𝑦𝑖2 = 1, 𝑛𝑖 = 1|𝑥𝑖)
ℙ(𝑛𝑖 = 1) = ℙ(𝑦𝑖2 = 1, 𝑦𝑖1 = 0|𝑥𝑖)

ℙ(𝑛𝑖 = 1)
where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2]. By Assumption 2.1 and 2.3, the numerator is

ℙ(𝑦𝑖2 = 1, 𝑦𝑖1 = 0|𝑥𝑖) = ℙ(𝑦𝑖2 = 1|𝑥𝑖)ℙ(𝑦𝑖1 = 0|𝑥𝑖) = Λ(𝑥𝑖2𝛽 + 𝑐𝑖)[1 − Λ(𝑥𝑖1𝛽 + 𝑐𝑖)]

and by the Law of Total Probability the denominator is

ℙ(𝑛𝑖 = 1) = ℙ(𝑦𝑖2 = 1, 𝑦𝑖1 = 0|𝑥𝑖) + ℙ(𝑦𝑖2 = 0, 𝑦𝑖1 = 1|𝑥𝑖)

= Λ(𝑥𝑖2𝛽 + 𝑐𝑖)[1 − Λ(𝑥𝑖1𝛽 + 𝑐𝑖)] + Λ(𝑥𝑖1𝛽 + 𝑐𝑖)[1 − Λ(𝑥𝑖2𝛽 + 𝑐𝑖)]

Therefore, 𝑝𝑖 simplifies to

𝑝𝑖 = Λ(𝑥𝑖2𝛽 + 𝑐𝑖)[1 − Λ(𝑥𝑖1𝛽 + 𝑐𝑖)]
Λ(𝑥𝑖2𝛽 + 𝑐𝑖)[1 − Λ(𝑥𝑖1𝛽 + 𝑐𝑖)] + Λ(𝑥𝑖1𝛽 + 𝑐𝑖)[1 − Λ(𝑥𝑖2𝛽 + 𝑐𝑖)]

= exp(𝑥𝑖2𝛽 + 𝑐𝑖)
exp(𝑥𝑖2𝛽 + 𝑐𝑖) + exp(𝑥𝑖1𝛽 + 𝑐𝑖)

= exp([𝑥𝑖2 − 𝑥𝑖1]𝛽)
exp([𝑥𝑖2 − 𝑥𝑖1]𝛽) + 1 = Λ([𝑥𝑖2 − 𝑥𝑖1]𝛽)
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2 ROBUST INFERENCE Inference and Estimation in Panel BDV Models

The other case where 𝑦𝑖1 = 1 is simply 1 − 𝑝𝑖 by the Law of Complements as the event 𝐴 =
{𝑦𝑖1 = 1} is the complement of 𝐵 = {𝑦𝑖2 = 1} after conditioning on 𝑛𝑖 = 𝑦𝑖1 + 𝑦𝑖2. Hence, the

likelihood contribution of individual 𝑖 is

L𝑖(𝛽) = Λ([𝑥𝑖2 − 𝑥𝑖1]𝛽)𝑤𝑖[1 − Λ([𝑥𝑖2 − 𝑥𝑖1]𝛽)]1−𝑤𝑖

where 𝑤𝑖 = 1 when (𝑦𝑖1, 𝑦𝑖2) = (0, 1) and 𝑤𝑖 = 0 when (𝑦𝑖1, 𝑦𝑖2) = (1, 0). The log-likelihood

contribution of individual 𝑖 is then

ℓ𝑖(𝛽) = 𝑤𝑖 log{Λ([𝑥𝑖2 − 𝑥𝑖1]𝛽)} + (1 − 𝑤𝑖) log{1 − Λ([𝑥𝑖2 − 𝑥𝑖1]𝛽)}

where log(⋅) is the natural logarithm. The conditional log-likelihood does not depend on the FEs

and thus circumvents the incidental parameters problem. Therefore, estimating the reduced-form

second-stage equation (2.4) with conditional logit provides consistent estimates of 𝛿𝑧 and 𝛿𝑣.

2.3 Test Algorithm

I outline an algorithm to conduct inference on 𝛽 that is robust to weak instruments in the first-

stage. The test, called the AR test, indirectly infers about 𝛽 by conducting inference on the link

function 𝑟(𝛿𝑧, 𝛽) = 𝛿𝑧−𝜉𝛽. For the hypothesis 𝐻0 ∶ 𝛽 = 𝛽0, the link function 𝑟( ̂𝛿𝑧, 𝛽0) = ̂𝛿𝑧− ̂𝜉𝛽0

has variance

Ψ̂𝛽0 = 𝕍 ( ̂𝛿𝑧 − ̂𝜉𝛽0) = Λ̂𝛿𝑧𝛿𝑧 + ( ̂𝛿𝑣 − 𝛽0)2Λ̂𝜉𝜉 (2.6)

where ̂𝛿𝑣 and ̂𝛿𝑧 are estimators of 𝛿𝑣 and 𝛿𝑧, respectively; Λ̂𝛿𝑧𝛿𝑧 is the variance of ̂𝛿𝑧, and Λ̂𝜉𝜉

is the variance of the first-stage instrument estimator ̂𝜉. Given this, the AR test is the quadratic

form of 𝑟( ̂𝛿𝑧, 𝛽0) = ̂𝛿𝑧 − ̂𝜉𝛽0

AR(𝛽0) = ( ̂𝛿𝑧 − ̂𝜉𝛽0)2Ψ̂−1
𝛽0

𝑎∼ 𝜒2(1) (2.7)

Given (2.6) and (2.7), The AR test algorithm for the one instrument, one endogenous variable

case in panel data is

1. Compute the estimator ̂𝜉 of 𝜉 and its variance Λ̂𝜉𝜉 by ordinary least squares (OLS) on

Equation (2.1). Also, compute the first-stage residuals ̂𝑣𝑖𝑡

2. Compute the estimators ̂𝛿𝑧 and ̂𝛿𝑣 of reduced-form parameters 𝛿𝑧 and 𝛿𝑣, respectively, via

conditional logit on Equation (2.4) with ̂𝑣𝑖𝑡 included as a regressor. Also, compute the

variance of ̂𝛿𝑣, denoted Λ̂𝛿𝑧𝛿𝑧
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2 ROBUST INFERENCE Inference and Estimation in Panel BDV Models

3. Substitute ̂𝜉, ̂𝛿𝑣, ̂𝛿𝑧, Λ̂𝜉𝜉 , and Λ̂𝛿𝑧𝛿𝑧 into Equation (2.6) and (2.7) along with the hypoth-

esised 𝛽0. The critical value for 100𝛼% significance level is 𝑐1−𝛼 such that ℙ(𝜒2(1) >
𝑐1−𝛼) = 𝛼. If AR(𝛽0) exceeds the critical value, then reject the null hypothesis that 𝛽 = 𝛽0

The AR test does not conduct inference directly about 𝛽 but rather on the link function 𝑟(𝛿𝑧, 𝛽).
The idea behind the test is to calculate whether the distance 𝑟( ̂𝛿𝑧, 𝛽0) = ̂𝛿𝑧 − ̂𝜉𝛽0 is statistically

different from 0. Here, ̂𝛿𝑧 is the consistently estimated reduced-form parameter and ̂𝜉𝛽0 is the

estimated value of the reduced-form parameter assuming 𝛽 = 𝛽0. The link function 𝑟(𝛿𝑧, 𝛽0)
being statistically different from 0 is evidence against the assumption 𝛽 = 𝛽0. So, inferring

about the link function is equivalent to indirectly inferring about the parameter of interest. In

this way, the AR test is robust to the weak instrument problem.

2.4 Concentration Parameter

To measure instrument strength, I define the concentration parameter 𝜇 which fixes instrument

strength across simulations with different samples. The concentration parameter 𝜇 is rearranged

for the scalar instrument 𝜉

𝜇 = 1
𝑘𝑧 (

𝜉′𝑧′𝑧𝜉
𝜎2

𝑣 ) so that 𝜉 = 𝜎𝑣√𝑘𝑧𝜇(𝑧′𝑧)−1,

where 𝜎2
𝑣 is the variance of the first-stage errors 𝑣𝑖𝑡. I normalise 𝑧′𝑧 = 1 and set 𝜇 ∈ {0.01, 3, 500}

to represent changing instrument strength from very weak (𝜇 = 0.01), weak (𝜇 = 3), and very

strong (𝜇 = 500) (Staiger and Stock, 1997).

2.5 Simulations

I conduct 10, 000 simulations of a panel consisting of 𝑛 = 100 individuals each observed over

𝑇 = 10 time periods of the simple one endogenous variable, one instrument model described

by Equation (2.1) and (2.2). The true parameter of interest is 𝛽0 = 0.5 and the endogeneity

parameter takes values 𝜌 = 0.20 and 𝜌 = 0.99 to describe low and high endogeneity, respectively.

I generate 𝑧𝑖𝑡 and 𝑣𝑖𝑡 from the standard Normal distribution while 𝜀𝑖𝑡 are drawn from a Logistic

distribution with centre 0 and scale parameter √3/𝜋. This scale parameter was chosen as it yields

a unit variance for 𝜀𝑖𝑡. The first-stage fixed effects 𝑏𝑖 are drawn from a Uniform distribution,

U(−0.5, 0.5), and the second-stage fixed effects are 𝑐𝑖 = 𝜌𝑏𝑖.

Table 1 shows that the AR test has approximately the correct small sample size regardless

of instrument strength whereas standard Wald tests over-reject by up to 100% of the correct size
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2 ROBUST INFERENCE Inference and Estimation in Panel BDV Models

when instruments are weak. Standard Wald tests over-reject the null hypothesis even when very

strong instruments are present (𝜇 = 500).

Table 1: Size Comparison (%) – Conditional Logit Panel Model

𝜇 = 0.01 𝜇 = 3 𝜇 = 500
𝜌 0.2 0.99 0.2 0.99 0.2 0.99

Size 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Wald( ̂𝛽) 7.48 13.10 12.55 19.92 5.29 10.72 12.08 19.50 5.26 10.39 5.55 11.19
AR(𝛽0) 4.85 10.11 4.83 9.67 4.96 10.39 5.13 10.23 5.30 10.29 4.73 9.95

Note. The above results implement the robust inference algorithm. Values in the table are percentages describing

the proportion of hypothesis tests rejected at the 5% and 10% levels. I test the hypothesis 𝐻0 ∶ 𝛽 = 0.5 against

𝐻1 ∶ 𝛽 ≠ 0.5. For both Wald and AR tests, standard errors are corrected for the generated regressor ̂𝑣𝑖𝑡.

That the Wald test over-rejects when 𝜇 = 500 in small samples adds to the evidence against

applying standard inferential methods in empirical analyses of binary outcome panel data. I in-

terpret this result with respect to the findings of Frazier et al. (2021), who find that 𝜇 overlooks

the non-linearity of the estimation procedure. To measure instrument strength, 𝜇 measures the

variability of 𝑧𝑖𝑡𝜉0, which assumes the second-stage equation is linear. Frazier et al. (2021) show

that 𝑔(⋅)𝑧𝑖𝑡𝜉0, and not 𝑧𝑖𝑡𝜉0, captures the true first-stage variability in nonlinear models where

𝑔(⋅) is a density function. Weighting by 𝑔(⋅) reduces the variability and thus weakens instrument

strength beyond what is strictly captured by 𝜇. Thus, 𝜇 overstates the variability of the endoge-

nous regressor with respect to the instrument, meaning 𝜇 may indicate strong instruments when

they are in fact weak. This is demonstrated in mild over-rejection rates in standard inference

when 𝜇 = 500 and 𝜌 = 0.99, indicative of extremely strong instruments and high endogeneity

in the linear case.

Results in Appendix B.1 reiterates that the AR test has approximately correct size in small

samples while Wald tests over-reject in alternative specifications, such as estimating reduced-

form parameters via a linear probability model (LPM) rather than CL.

2.6 Confidence Intervals

To construct 100(1 − 𝛼)% confidence intervals for scalar 𝛽 from the AR test, define a grid of

parameter values B = {𝛽 ∶ 𝑎 ≤ 𝛽 ≤ 𝑏}, where 𝑎, 𝑏 ∈ ℝ. For every 𝛽𝑘 ∈ B, compute the
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AR(𝛽𝑘) statistic and decide whether to reject at the 100𝛼% significance level. The 100(1 − 𝛼)%
confidence interval is then

C ≡ {𝛽𝑘 ∈ B ∶ AR(𝛽𝑘) < 𝑐1−𝛼}

where 𝑐1−𝛼 is a real number such that ℙ(𝜒2(1) ≥ 𝑐1−𝛼) = 𝛼. When 𝛽 is an 𝑚-dimensional vector,

specify grids each component 𝛽𝑗 of 𝛽 of the form B𝑗 ≡ {𝛽𝑗 ∶ 𝑎𝑗 ≤ 𝛽𝑗 ≤ 𝑏𝑗} where 𝑎𝑗 , 𝑏𝑗 ∈ ℝ.

The confidence set is constructed by calculating the AR test at all elements of the Cartesian

product of the B𝑗 for 𝑗 = 1, 2, ...𝑘, which is the set of all 𝑚-tuples whose 𝑗𝑡ℎ component is an

element of B𝑗 for all 𝑗 = 1, 2, ..., 𝑚.

3 Heteroskedasticity

Economists often rely on estimating heteroskedasticity or cluster robust standard errors to ac-

commodate a more general variance-covariance structure. However, parameters are estimated

under the assumption that errors are homoskedastic. How this variance misspecification affects

parameter estimation is often overlooked.

Recall the control function formulation of second-stage errors in Equation (2.1) 𝑢𝑖𝑡 = 𝜌𝑣𝑖𝑡 +
𝜀𝑖𝑡, where 𝑣𝑖𝑡 are first-stage errors and 𝜀𝑖𝑡 are idionsyncratic second-stage error term. I show

that quasi-maximum likelihood estimation (QMLE) that misspecifies a heteroskedastic 𝜀𝑖𝑡 as

homoskedastic produces an inconsistent estimator ̃𝛽 of the true 𝛽0. However, QMLE that mis-

specifies a heteroskedastic 𝑣𝑖𝑡 as homoskedastic remains consistent for the true 𝛽0. I illustrate

these theoretical results with a variety of models such as CL and LPM in simulated panel data.

3.1 Two-Group Heteroskedasticity

Consider the case where observations are drawn from two groups with different error variances.

To focus and simplify the discussion, I examine a panel with 𝑛 individuals each observed over

𝑇 = 2 periods with no endogenous variable. From this analysis, I infer issues with the general

𝑇 -period likelihood. An explicit discussion of the IV model is provided in Appendix A.4.

Call the set of individuals in group 1 O and the set of individuals in group 2 T. The two-

group latent variable is

𝑦∗
𝑖𝑡 =

⎧⎪
⎨
⎪⎩

𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝑒(1)
𝑖𝑡 , when 𝑖 ∈ O

𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝑒(2)
𝑖𝑡 , when 𝑖 ∈ T
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3 HETEROSKEDASTICITY Inference and Estimation in Panel BDV Models

where 𝑥𝑖𝑡 is a scalar explanatory variable, 𝛽 its corresponding parameter with true value 𝛽0, 𝑐𝑖

are individual level FEs, and 𝑒(𝑗)
𝑖𝑡 denotes the error term for group 𝑗 = 1, 2. Assume that 𝑒(1)

𝑖𝑡

and 𝑒(2)
𝑖𝑡 are Logistically distributed with location 0 and have variance 𝜎2

1 and 𝜎2
2 , respectively.

Assume that 𝑦𝑖𝑡 is defined as in Equation (2.5).

Let the true 𝛽0 ∈ Β where Β is a compact subset of ℝ, be the unique parameter vector which

solves

𝛽0 = arg max
𝛽∈Β

𝔼[𝑔𝑖ℓ
(1)
𝑖 (𝛽) + (1 − 𝑔𝑖)ℓ

(2)
𝑖 (𝛽)] (3.1)

where ℓ(1)
𝑖 (⋅) and ℓ(1)

𝑖 (⋅) are the log-likelihood contribution of individual 𝑖 in group 1 or 2, respec-

tively, and 𝑔𝑖 if 𝑖 is in group 1 and 𝑔𝑖 = 0, otherwise. Following the derivation of the 2-period

log-likelihood in subsection 2.2, the log-likelihood contribution for individual 𝑖 in group 𝑗 = 1, 2
of observed sample data are

ℓ(1)
𝑖 (𝑦𝑖|𝑥𝑖, 𝑐𝑖, 𝛽) = 𝑤𝑖 log Λ1[(𝑥𝑖2 − 𝑥𝑖1)𝛽] + (1 − 𝑤𝑖) log{1 − Λ1[(𝑥𝑖2 − 𝑥𝑖1)𝛽]}

ℓ(2)
𝑖 (𝑦𝑖|𝑥𝑖, 𝑐𝑖, 𝛽) = 𝑤𝑖 log Λ2[(𝑥𝑖2 − 𝑥𝑖1)𝛽] + (1 − 𝑤𝑖) log{1 − Λ2[(𝑥𝑖2 − 𝑥𝑖1)𝛽]}

where 𝑤𝑖 = 1 when (𝑦𝑖1, 𝑦𝑖2) = (0, 1), 𝑤𝑖 = 0 when (𝑦𝑖1, 𝑦𝑖2) = (1, 0), and

Λ𝑗(𝑘𝑖) =
exp(𝑘𝑖/𝑞𝜎𝑗)

exp(𝑘𝑖/𝑞𝜎𝑗) + 1 for 𝑗 = 1, 2

for 𝑞 = √3/𝜋 and 𝑘𝑖(𝛽) = (𝑥𝑖2 − 𝑥𝑖1)𝛽. I omit the argument 𝛽 in 𝑘𝑖(𝛽) to ease expression unless

it improves clarity. Therefore, 𝛽0 has consistent estimator

̂𝛽 = arg max
𝛽∈Β

1
𝑛

𝑛

∑
𝑖=1

{𝑔𝑖ℓ
(1)
𝑖 (𝑦𝑖|𝑥𝑖, 𝑐𝑖, 𝛽) + (1 − 𝑔𝑖)ℓ

(2)
𝑖 (𝑦𝑖|𝑥𝑖, 𝑐𝑖, 𝛽)}

QMLE would ignore the underlying heteroskedasticity and assume 𝕍 (𝑒(1)
𝑖𝑡 ) = 𝕍 (𝑒(1)

𝑖𝑡 ) = 𝜎2.

Hence, the quasi-log-likelihood contribution of individual 𝑖 is

ℓq

𝑖 (𝑦𝑖|𝑥𝑖, 𝑐𝑖, 𝛽) = log Λ[(𝑥𝑖2 − 𝑥𝑖1)𝛽], for Λ(𝑘𝑖) = exp(𝑘𝑖/𝑞𝜎)
exp(𝑘𝑖/𝑞𝜎) + 1

QMLE yields the estimator of 𝛽0

̃𝛽 = arg max
𝛽∈Β

𝑛

∑
𝑖=1

ℓq

𝑖 (𝑦𝑖|𝑥𝑖, 𝑐𝑖, 𝛽)

The first result is

Result 3.1. ̃𝛽 is an inconsistent estimator of 𝛽0.
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Proof is provided in Appendix A.3.

Result 3.1 means that when heteroskedasticity in the error term 𝑒𝑖𝑡 is ignored parameter esti-

mates are inconsistent for 𝛽0. The single equation model and Result 3.1 motivates the following

Result 3.2. Consider the two-stage IV model described by Equation (2.1) and (2.2), where 𝛽
is the parameter of the endogenous variable of interest with true value 𝛽0. Call 𝑣𝑖𝑡 and 𝜀𝑖𝑡

the idiosyncratic first- and second-stage errors, respectively. QMLE that misspecifies a het-

eroskedastic 𝜀𝑖𝑡 as homoskedastic is inconsistent for true parameter 𝛽0. QMLE that misspecifies

heteroskedastic 𝑣𝑖𝑡 as homoskedastic while 𝑢𝑖𝑡 = 𝜌𝑣𝑖𝑡 +𝜀𝑖𝑡 is conditionally homoskedastic, which

means that 𝜀𝑖𝑡 is homoskedastic, remains consistent for true parameter 𝛽0.

Proof is provided in the Appendix A.4.

Result 3.2 implies that researchers must be careful about ignoring heteroskedasticity in panel

binary dependent variable IV models as subsequent parameter estimators, and all inference

therein, may be inconsistent. Specifically, when heteroskedasticity in 𝑣𝑖𝑡 is ignored, estima-

tors remain consistent. However, when idiosyncratic second-stage heteroskedasticity via 𝜀𝑖𝑡 is

ignored, all subsequent parameter estimators are inconsistent. Hence, assuming that 𝜀𝑖𝑡 is ho-

moskedastic is necessary for parameter estimates and subsequent inference to be consistent and

underpins analyses in applied research implementing IV in binary outcome panel data. I illus-

trate this issue in subsection 3.2 via Monte Carlo simulations.

3.2 Simulations

I estimate linear probability models (LPMs), panel data logit with dummy individual FEs (UCL),

and conditional logit (CL) in simulated panel data to illustrate Result 3.2. Simulations include

one endogenous variable and one instrument. I compare estimator consistency between when a

heteroskedastic 𝜀𝑖𝑡 or 𝑣𝑖𝑡 is assumed homoskedastic. I simulate the one instrument, one endoge-

nous variable model

𝑥𝑖𝑡 = 𝑧𝑖𝑡𝜉 + 𝑏𝑖 + 𝑣𝑖𝑡

𝑦∗
𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝜌𝑣𝑖𝑡 + 𝜀𝑖𝑡

for 𝑛 = 100 individuals over 𝑇 = 10 time periods. The true parameter of interest is 𝛽0 = 0.5,

𝜌 ∈ {0.20, 0.99}, 𝜉 is set such that 𝜇 = 500 (strong instruments) and 𝜇 = 1 (weak instruments),

and second-stage fixed effects, 𝑐𝑖 are generated from U(−0.5, 0.5), 𝑏𝑖 = 0 for all 𝑖. The different
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models are summarised in Table 2. How 𝑣𝑖𝑡 and 𝜀𝑖𝑡 are generated varies and is described in

subsection 3.2.1 and 3.2.2.

Table 2: Different Estimation Procedures – Panel QMLE

Model Estimator Regression

UCL ̂𝛽𝑈𝐶𝐿 Regress 𝑦𝑖𝑡 on 𝑥𝑖𝑡, ̂𝑣𝑖𝑡, and dummy 𝑐𝑖 via logit

CL ̂𝛽𝐶𝐿 Regress 𝑦𝑖𝑡 on 𝑥𝑖𝑡 and ̂𝑣𝑖𝑡 via conditional logit

LPM ̂𝛽𝐿𝑃 𝑀 Regress 𝑦𝑖𝑡 on 𝑥𝑖𝑡, ̂𝑣𝑖𝑡, and dummy 𝑐𝑖 via ordinary least squares (OLS)

3.2.1 Heteroskedastic First-Stage Errors

First, I illustrate that QMLE assuming heteroskedastic first-stage errors 𝑣𝑖𝑡 are homoskedastic is

consistent so long as 𝜀𝑖𝑡 is homoskedastic. To simulate this, I generate 𝑣𝑖𝑡 from the multivariate

Normal distribution

𝑣𝑖𝑡 ∼ N(
⎡
⎢
⎢
⎣

0
0

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

𝜎2
1 0

0 𝜎2
2

⎤
⎥
⎥
⎦

)

where 𝜎2
1 = 100 and 𝜎2

2 = 0.01 represent the variance of group 1 and group 2, respectively.

Each group contains 50% of the observations each. Furthermore, I generate 𝜀𝑖𝑡 from Logistic

distribution with location 0 and scale parameter 𝑠 = 1. I estimate 𝛽 assuming that 𝑣𝑖𝑡 are from

a standard Normal distribution.

First-stage heteroskedasticity biases the LPM model towards 0 in all instrument strength and

endogeneity specifications. In Figure 1(a), ̂𝛽𝐶𝐿 is Normal and approximately centred around

𝛽0 = 0.5 for low and high endogeneity, demonstrating that QMLE ignoring first-stage het-

eroskedasticity remains consistent. The estimator ̂𝛽𝑈𝐶𝐿, however, is inconsistent. When in-

struments are weak, estimator distributions become misshapen and inconsistently estimate 𝛽0.

Inconsistency worsens as the degree of endogeneity 𝜌 increases. Both ̂𝛽𝐶𝐿 and ̂𝛽𝑈𝐶𝐿 densities

are slightly left skewed when 𝜌 = 0.99 and 𝜇 = 1.
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3 HETEROSKEDASTICITY Inference and Estimation in Panel BDV Models

Figure 1: Logit and LPM estimators with heteroskedastic 𝑣𝑖𝑡 and homoskedastic 𝜀𝑖𝑡

(a) 𝜇 = 500, 𝜌 = 0.20 (b) 𝜇 = 500, 𝜌 = 0.99

(c) 𝜇 = 1, 𝜌 = 0.20 (d) 𝜇 = 1, 𝜌 = 0.99

CL – UCL – LPM –

3.2.2 Heteroskedastic Second-Stage Errors

I show that QMLE assuming heteroskedastic 𝜀𝑖𝑡 are homoskedastic yields inconsistent parameter

estimates. Individuals are separated into two groups each encompassing 50% of the sample,

where the second-stage errors of groups 1 and 2 are Logistic distributed with location 0 and

variances 𝕍 [𝜀(1)
𝑖𝑡 ] = 100 and 𝕍 [𝜀(2)

𝑖𝑡 ] = 0.01, respectively. The 𝑣𝑖𝑡 are Normal with mean 0 and

variance 1.

Figure 2 demonstrates that even when instruments are strong, ignoring second-stage het-

eroskedasticity yields inconsistent parameter estimates. When 𝜌 = 0.20, the CL and UCL

estimators are upwardly biased while when 𝜌 = 0.99 they feature a downward bias. When

instruments are weak, parameter estimates are significantly more dispersed and still feature a
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3 HETEROSKEDASTICITY Inference and Estimation in Panel BDV Models

bias, although this is not immediately evident from Figure 2(c) and 2(d). The LPM estimator is

downwardly biased regardless of the degree of endogeneity 𝜌.

Figure 2: Logit and LPM estimators with homoskedastic 𝑣𝑖𝑡 and heteroskedastic 𝜀𝑖𝑡

(a) 𝜇 = 500, 𝜌 = 0.20 (b) 𝜇 = 500, 𝜌 = 0.99

(c) 𝜇 = 1, 𝜌 = 0.20 (d) 𝜇 = 1, 𝜌 = 0.99

CL – UCL – LPM –

Clearly, ignoring heteroskedasticity yields inconsistent parameter estimates even when in-

struments are strong as asserted by Result 3.2. This means applied research estimating het-

eroskedasticity robust standard errors must assume that second-stage errors 𝑢𝑖𝑡 = 𝜌𝑣𝑖𝑡 + 𝜀𝑖𝑡

are conditionally homoskedastic so all subsequent parameter and standard error estimates are

consistent.
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4 Marginal Effects

It is possible that parameter inconsistency from ignored heteroskedasticity translates across to

the estimation of marginal effects. Investigating how ignored heteroskedasticity may contami-

nate marginal effect estimation is crucial since they are pervasive in applied research for inter-

preting nonlinear regression results. For these reasons, I extend the simulations in subsection

3.2 to investigate marginal effects between different models in panels with heteroskedastic er-

rors. I outline the basic theory behind marginal effects, derive equations to compute them in the

presence of heteroskedasticity, then progress to the simulations.

As the proposed conditional logit procedure does not estimate FEs, marginal effects cannot

be directly computed without ex post facto assumptions about the FEs. Therefore, I first analyse

the effects of different assumptions about FEs in conditional logit procedures and then discuss

the effects of heteroskedasticity misspecification.

4.1 Background

Suppose x is an 𝑛𝑇 ×𝑘 matrix of explanatory variables and 𝜽 is a 𝑘×1 vector of parameters, where

𝑛 represents the number of individuals and 𝑇 the time periods. Consider the model 𝔼[𝑦𝑖𝑡|x𝑖𝑡] =
ℙ(𝑦𝑖𝑡 = 1|x𝑖𝑡) = 𝐺(x𝑖𝑡𝜽), where 𝐺(⋅) is a CDF. Assuming that 𝐺(x𝜽) is differentiable and x are

continuous, the partial derivative with respect to the 𝑗𝑡ℎ explanatory variable is

𝜕𝔼[𝑦𝑖𝑡|x𝑖𝑡]
𝜕𝑥𝑗

= 𝜕ℙ(𝑦𝑖𝑡 = 1|x𝑖𝑡)
𝜕𝑥𝑗

= 𝑔(x𝑖𝑡𝜽)𝜃𝑗 ≈ Δ𝔼[𝑦𝑖𝑡|x𝑖𝑡]
Δ𝑥𝑗

, for small Δ𝑥𝑗 (4.1)

where 𝑔(⋅) = 𝐺′(⋅) is the density of CDF 𝐺(⋅). Equation (4.1), called the marginal effect, rep-

resents the rate of change in the response probability with respect to the explanatory variable

𝑥𝑗 .

As I examine panel models with fixed effects, it is natural to consider the conditional expecta-

tion to be a function of observable and unobservable explanatory variables, x and 𝑐 respectively.

This implies 𝔼[𝑦𝑖𝑡|x𝑖𝑡, 𝑐𝑖] = 𝑓(x𝑖𝑡, 𝑐𝑖) and

𝛿𝑗(x, 𝑐) ≡ 𝜕𝑓(x, 𝑐)
𝜕𝑥𝑗

= 𝜃𝑗𝑓 ′(x, 𝑐) (4.2)

Equation (4.2) however is not useful in practice as 𝛿𝑗 requires knowledge of 𝑐, which is a contra-

diction since it is unobservable. To circumvent this problem, average marginal effects (AMEs)

are commonly estimated (Wooldridge, 2010). A consistent estimator of AMEs in binary out-
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come panel data is

̄𝑑𝑗(x𝑜) ≡ 1
𝑛𝑇

𝑛

∑
𝑖=1

𝑇

∑
𝑡=1

𝜕𝔼[𝑦𝑖𝑡|x𝑖𝑡]
𝜕𝑥𝑖,𝑗 |x=x𝑜

=
̂𝜃𝑗

𝑛𝑇

𝑛

∑
𝑖=1

𝑇

∑
𝑡=1

𝑔(x𝑜
𝑖𝑡�̂�)

Standard errors of ̄𝑑𝑗(x𝑜) are obtained via the Delta method, demonstrated in Appendix A.5.

4.2 AMEs and Heteroskedasticity

Consider the model

𝑥𝑖𝑡 = 𝑧𝑖𝑡𝜉 + 𝑏𝑖 + 𝑣𝑖𝑡

𝑦∗
𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑣𝑖𝑡𝜌 + 𝑐𝑖 + 𝜀𝑖𝑡

𝕍 [𝜀𝑖𝑡] = [𝑉 (ℎ𝑖𝛾)]2 > 0 so that 𝜀𝑖𝑡 ∼ L(0, 𝑞𝑉 (ℎ𝑖𝛾))
𝑣𝑖𝑡 ∼ N(0, 𝜎2)

where ℎ𝑖 is a matrix of explanatory variables determining an individual’s error variance, 𝛾 the

corresponding parameter vector, and 𝑞 = √3/𝜋 is a constant. Let the observed binary dependent

variable be 𝑦𝑖𝑡 = 1 when 𝑦∗
𝑖𝑡 > 0 and 𝑦𝑖𝑡 = 0 when 𝑦∗

𝑖𝑡 < 0. Assume that

ℙ(𝑦𝑖𝑡 = 1|𝑥𝑖𝑡, 𝑣𝑖𝑡, 𝑐𝑖) = Λ{
𝑥𝑖𝑡𝛽 + 𝑣𝑖𝑡𝜌 + 𝑐𝑖

𝑞𝑉 (ℎ𝑖𝛾) }

where Λ(⋅) is the standard Logistic CDF with location 0 and scale 1. To compute AMEs in this

setting, I mirror Greene (2003) and unite second-stage variables as b𝑖𝑡 = (𝑥𝑖𝑡, 𝑣𝑖𝑡) with corre-

sponding parameter vector 𝜷 = (𝛽, 𝜌)′ and all regressors g𝑖𝑡 = (b′
𝑖𝑡, ℎ𝑖)′, with corresponding

parameter vector 𝝎 = (𝜷′, 𝛾). I derive marginal effects with respect to all components of g

𝜕ℙ(𝑦𝑖𝑡 = 1|g𝑖𝑡, 𝑐𝑖)
𝜕𝑔𝑘

= 𝜆{
𝑥𝑖𝑡𝛽 + 𝑣𝑖𝑡𝜌 + 𝑐𝑖

𝑞𝑉 (ℎ𝑖𝛾) }
𝑏𝑘𝑉 (ℎ𝑖𝑡𝛾) − ℎ𝑘𝑉 ′(ℎ𝑖𝛾)(𝑥𝑖𝑡𝛽 + 𝑣𝑖𝑡𝜌 + 𝑐𝑖)

𝑞[𝑉 (ℎ𝑖𝛾)]2

where

𝑏𝑘 ≡
⎧⎪
⎨
⎪⎩

𝜷𝑗 if 𝑔𝑘 is the 𝑗𝑡ℎ element of b

0, otherwise
and ℎ𝑘 ≡

⎧⎪
⎨
⎪⎩

𝛾𝑗 if 𝑔𝑘 is the 𝑗𝑡ℎ element of ℎ

0, otherwise

Thus, the AME evaluated at fixed g𝑜 = (𝑥𝑜, 𝑣𝑜, ℎ𝑜)′ is

̄𝑑(𝒈𝑜) = 1
𝑛𝑇

𝑛

∑
𝑖=1

𝑇

∑
𝑡=1

𝜆{
𝑥𝑜

𝑖𝑡𝛽 + 𝑣𝑜
𝑖𝑡𝜌 + 𝑐𝑖

𝑞𝑉 (ℎ𝑜
𝑖 𝛾) }

𝑏𝑘𝑉 (ℎ𝑜
𝑖 𝛾) − ℎ𝑘𝑉 ′(ℎ𝑜

𝑖 𝛾)(𝑥𝑜
𝑖𝑡𝛽 + 𝑣𝑜

𝑖𝑡𝜌 + 𝑐𝑖)
𝑞[𝑉 (ℎ𝑜

𝑖 𝛾)]2 (4.3)

which is the AME evaluated at fixed g𝑜 = (𝑥𝑜, 𝑣𝑜, ℎ𝑜)′ and parameter vector 𝝎 = (𝛽, 𝜌, 𝛾)′.

Assuming that �̂� = ( ̂𝜃, ̂𝜌, ̂𝛾)′ is a consistent estimator of𝝎0, ̄𝑑(g𝑜) evaluated with �̂� is a consistent
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estimator of the true AME. The estimator �̂� is obtained via conditional logit on the second-

stage where 𝑣𝑖𝑡 is replaced by the first-stage estimated residuals ̂𝑣𝑖𝑡. QMLE that falsely assumes

𝑉 (ℎ𝑖𝛾) = 𝜎 yields the AME estimator

̄𝑑𝑄(g𝑜) = 𝑏𝑘
𝑞𝜎𝑛𝑇

𝑛

∑
𝑖=1

𝑇

∑
𝑡=1

𝜆{
𝑥𝑜

𝑖𝑡𝛽 + 𝑣𝑜
𝑖𝑡𝜌 + 𝑐𝑖

𝑞𝜎 } (4.4)

evaluated at the parameter estimate from QMLE, denoted 𝝎∗ = (𝜃∗, 𝜌∗)′. I expect Equation

(4.4) to yield inconsistent estimates of the true marginal effects in Equation (4.3) since 𝝎∗ is

inconsistent for 𝝎0.

4.3 FEs and Panel AMEs

Computing AMEs in panel data via Equation (4.3) or (4.4) is difficult because they require a

value for the FEs 𝑐𝑖. Estimating parameters with conditional logit does not yield estimates of the

FEs. Hence, is not clear how to compute the AMEs from conditional logit in panel data. Hence,

ex post facto assumptions about the FEs are required to compute AMEs. With this in mind, I

first analyse how different ex post facto assumptions about FEs contaminate AME estimation

and then discuss how heteroskedasticity might further complicate estimation.

4.4 Cross Section Simulations

I provide Monte Carlo simulations of binary outcome cross sectional models to illustrate how

misspecified heteroskedaticity might yield inconsistent AME estimates. I compare outcomes

across weak (𝜇 = 1) and strong (𝜇 = 500) instruments. I simulate the following model

𝑥𝑖 = 𝑧𝑖𝜉 + 𝑣𝑖

𝑦∗
𝑖 = 𝑥𝑖𝛽 + 𝜌𝑣𝑖 + 𝜀𝑖

and compute true AMEs against AMEs estimated from QMLE. Here, 𝛽 = 0.5, 𝜌 ∈ {0.20, 0.99},

and 𝜉 is set such that 𝜇 ∈ {1, 500}. The sample size for each simulation is 𝑛 = 1, 000 and I

conduct 𝑁 = 10, 000 simulations. In each simulation I compute the true AME via Equation

(4.3) and the AME obtained from QMLE that assumes homoskedastic errors across individuals

via Equation (4.4). The first- and second-stage error terms, 𝑣𝑖 and 𝜀𝑖, are defined in the next

subsections depending on the nature of the heteroskedasticity misspecification.
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4.4.1 First-Stage Misspecification

To illustrate the effect of misspecified first-stage heteroskedasticity, suppose that individuals fall

into two groups each encompassing 50% of the sample. Generate the first- and second-stage

errors as

𝑣𝑖 ∼ N(
⎡
⎢
⎢
⎣

0
0

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

𝜎2
1 0

0 𝜎2
2

⎤
⎥
⎥
⎦

), 𝜀𝑖 ∼ L(0, √3/𝜋)

where 𝜎2
1 = 100 and 𝜎2

2 = 0.01 represent the variance of group 1 and group 2, respectively. I

generate 𝜀𝑖 from Logistic distribution with location 0 and scale parameter 𝑠 = √3/𝜋. I estimate

𝛽 assuming that 𝑣𝑖 are from a standard Normal distribution via LPM (OLS) and logit.

Figure 3 plots AME estimator distributions in the above cross sectional models across weak/strong

instruments and low/high endogeneity. Figure 3(a) shows that AMEs estimated from QMLE are

Figure 3: Logit and LPM AMEs with heteroskedastic 𝑣𝑖 and homoskedastic 𝜀𝑖

(a) 𝜇 = 500, 𝜌 = 0.20 (b) 𝜇 = 500, 𝜌 = 0.99

(c) 𝜇 = 1, 𝜌 = 0.20 (d) 𝜇 = 1, 𝜌 = 0.99

Logit – LPM –
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consistent even when first-stage heteroskedasticity is misspecified, particularly when instruments

are strong and endogeneity is low. Figure 3(b) reinforces the conclusion that higher endogeneity

increases the AME variance as demonstrated by the flattening density for the logit estimator. As

demonstrated for parameter estimates, the quasi-LPM estimator is inconsistent about the true

AME.

Figure 3(c) and 3(d) illustrate how weak instruments severely hinder AME point estimation,

particularly in the high endogeneity case where the density’s centre is far from the mean AME

across the 10, 000 simulations. Bimodality emerges for the quasi-LPM AME estimator in the

presence of weak instruments. The bimodality is likely a significant component of the distribu-

tion rather than simply an artefact of random sampling due to the sharp peaks in density over a

large number of simulations.

4.4.2 Second-Stage Misspecification

To illustrate the effect of misspecified second-stage heteroskedasticity, suppose that individuals

fall into two groups each encompassing 50% of the sample. Generate the first- and second-stage

errors as

𝑣𝑖 ∼ N(0, 1), 𝜀(𝑗)
𝑖 ∼ L(0, 𝑞𝜎𝑗)

where 𝜀(𝑗)
𝑖 represents the second-stage error distribution of individual in group 𝑗 = 1, 2 and

𝑞 = √3/𝜋. I set 𝜎2
1 = 100 and 𝜎2

2 = 0.01. I compute the true AME via Equation (4.3) which in

the cross sectional two-group case is

̄𝛿 = 𝛽
𝑞𝑛

𝑛

∑
𝑖=1 [

𝑔𝑖
𝜎1

𝜆{
𝑥𝑖𝛽 + 𝑣𝑖𝜌

𝑞𝜎1 } + 1 − 𝑔𝑖
𝜎2

𝜆{
𝑥𝑖𝛽 + 𝑣𝑖𝜌

𝑞𝜎2 }]

where 𝑔𝑖 = 1 if individual 𝑖 is in group 1 and 𝑔𝑖 = 0 if 𝑖 is in group 2. I compare the mean true

AME over the 10,000 simulations to the AME estimated from QMLE which assumes the scale

parameter for all individuals is 1; that is, the AME assuming 𝜀𝑖 ∼ L(0, 1) for all individuals

𝑖 = 1, 2, ..., 𝑛. Figure 4 plots the AME densities over the 10,000 simulations.

For strong instruments, AME estimators are consistent when estimated from quasi-logit in

the two-group case. This is a surprising result given that parameter estimators are inconsistent

under misspecification as presented in subsection 3.4.2. AMEs estimated from LPMs are in-

consistent under the variance misspecification. This questions to practice of estimating causal

effects in binary outcome settings with linear models. When instruments are weak, however,
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AMEs estimated from both models become inconsistent. Distributions change little between

low and high endogeneity when instruments are weak.

That AMEs are consistent under variance misspecification when instruments are strong for

the two-group logit model is surprising given that parameter estimators are inconsistent. To

investigate the issue further, Appendix B.2 simulates an individual heteroskedasticity model.

AMEs estimated from QMLE with misspecified individual heteroskedasicity eventually become

inconsistent depending on the variance of ℎ𝑖, the variable determining individual 𝑖’s variance.

This confirms the intuition that misspecified heteroskedasticity can cause inconsistent AME

estimates, and is a significant finding given how pervasive AMEs are in empirical research.

Figure 4: Logit and LPM AMEs with homoskedastic 𝑣𝑖 and heteroskedastic 𝜀𝑖

(a) 𝜇 = 500, 𝜌 = 0.20 (b) 𝜇 = 500, 𝜌 = 0.99

(c) 𝜇 = 1, 𝜌 = 0.20 (d) 𝜇 = 1, 𝜌 = 0.99

Quasi Logit – Quasi LPM –
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4.5 Panel Simulations

I simulate the model outlined in Section 3.2 to first investigate how ex post facto assumptions

about FEs might contaminate AME estimation and, second, examine how misspecified het-

eroskedasticity might further contaminate AME estimates.

The number of individuals is 𝑛 = 100 and the time series dimension varies from 𝑇 = 2 to 𝑇 =
10. I conduct 10, 000 simulations. I implement the four following AME estimation procedures:

the conditional logit estimated 𝛽 and assuming 𝑐𝑖 = 0 for all individuals (CL1), the conditional

logit estimated 𝛽 and substituting dummy variable estimated 𝑐𝑖 from unconditional/standard logit

(CL2), conditional logit estimated 𝛽 assuming knowledge of the true first-stage residuals, 𝑣𝑖𝑡, and

true FEs 𝑐𝑖 (𝐶𝐿-true), unconditional/standard logit estimated 𝛽 with dummy variable estimated

𝑐𝑖 (UCL), and a linear probability model estimated 𝛽 with dummy variable estimated 𝑐𝑖 (LPM).

Table 3 summarises each procedure.

I draw the true fixed effects, 𝑐𝑖, from either U(−0.5, 0.5) or N(0, 1) and calculate the true

AMEs by using the Equation (4.3). I draw from 𝜇 ∈ {1, 500} and the degree of endogeneity

𝜌 ∈ {0.20, 0.99} to simulate weak/strong instruments and low/high endogeneity. The naming

conventions and direction of the following analysis are adapted from Stammann et al. (2016),

although including the LPM is a novel addition to the literature.

Table 3: Panel Models for AME Estimation

Model Regression Fixed Effects

UCL 𝑦𝑖𝑡 on 𝑥𝑖𝑡, ̂𝑣𝑖𝑡, and dummy 𝑐𝑖 via standard logit MLE ̂𝑐𝑖 from UCL

CL1 𝑦𝑖𝑡 on 𝑥𝑖𝑡, ̂𝑣𝑖𝑡 via conditional logit 𝑐𝑖 = 0
CL2 𝑦𝑖𝑡 on 𝑥𝑖𝑡, ̂𝑣𝑖𝑡 via conditional logit ̂𝑐𝑖 from UCL

CL-true 𝑦𝑖𝑡 on 𝑥𝑖𝑡, 𝑣𝑖𝑡 via conditional logit true 𝑐𝑖

LPM 𝑦𝑖𝑡 on 𝑥𝑖𝑡, ̂𝑣𝑖𝑡, and dummy 𝑐𝑖 via OLS ̂𝑐𝑖 from LPM

4.5.1 FEs Assumptions

I assume both first- and second-stage errors are homoskedastic, distributed as 𝜀𝑖𝑡 ∼ L(0, √3/𝜋)
and 𝑣𝑖𝑡 ∼ N(0, 1), respectively. Tables 4 and 5 detail AME bias for strong and weak instruments,

respectively.

Table 4 shows bias in the AMEs for each model when instruments are strong. All models
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feature a bias in the 𝑇 = 2 panels across both low and high endogeneity and for Uniform and

Normal FEs. Particularly surprising is that CL-true exhibits a small bias, between 2-5% de-

pending on the level of endogeneity and the FE source. Bias disappears as 𝑇 increases from 2

to 10 for all models. The CL2 procedure exhibits the greatest percentage bias across low or high

and Uniform or Normal FEs. CL1, meanwhile, features a much smaller bias than CL2 across

all panel dimensions and is mostly negligible when FEs are Uniform. However, when FEs are

Normal, the bias in CL2 increases to around 20% and 13% in low and high endogeneity, respec-

tively, and sometimes exceeds the CL2 bias. The UCL and LPM procedures performs best in

terms of producing the smallest bias.

Table 4: AME Percentage Bias Strong Instruments (𝜇 = 500)

(a) 𝜌 = 0.20

U(−.5, .5) N(0, 1)
𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

𝑇 = 2 3.82 48.86 2.81 17.41 1.31 21.49 49.57 4.39 18.86 0.74
(0.004) (-0.049) (0.003) (-0.017) (0.001) (0.018) (-0.043) (0.004) (-0.016) (-0.001)

𝑇 = 4 1.86 21.98 0.11 1.13 0.36 21.82 23.65 0.94 0.06 0.39
(0.002) (-0.023) (0.000) (0.000) (0.000) (0.019) (-0.021) (0.001) (0.000) (0.000)

𝑇 = 6 1.58 14.24 0.01 0.82 0.40 19.73 16.07 0.46 0.07 0.54
(0.002) (-0.015) (0.000) (0.001) (0.000) (0.018) (-0.015) (0.000) (0.000) (0.001)

𝑇 = 8 1.45 10.68 0.21 0.35 0.39 21.21 11.89 0.57 0.08 0.35
(0.002) (-0.012) (0.000) (0.000) (0.000) (0.019) (-0.011) (0.001) (0.000) (0.000)

𝑇 = 10 1.51 8.61 0.01 0.10 0.18 20.69 9.44 0.38 0.20 0.45
(0.002) (-0.009) (0.000) (0.000) (0.000) (0.019) (-0.009) (0.000) (0.000) (0.000)

(b) 𝜌 = 0.99

U(−.5, .5) N(0, 1)
𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

𝑇 = 2 1.84 49.67 1.83 30.49 0.31 13.97 50.84 3.12 31.79 1.17
(0.002) (-0.041) (0.002) (-0.025) (0.000) (0.010) (0.008) (0.002) (-0.058) (-0.001)

𝑇 = 4 0.90 19.48 0.14 0.94 0.14 13.15 22.71 1.18 1.18 0.51
(0.001) (-0.017) (0.000) (0.001) (0.000) (0.010) (-0.017) (0.001) (-0.001) (0.000)

𝑇 = 6 0.70 11.73 0.14 1.42 0.39 11.46 14.89 0.25 0.02 0.13
(0.001) (-0.010) (0.000) (0.000) (0.000) (0.009) (-0.011) (0.000) (0.000) (0.000)

𝑇 = 8 0.59 8.65 0.27 0.60 0.09 12.82 10.60 0.20 0.35 0.28
(0.001) (-0.002) (0.000) (-0.185) (0.000) (0.010) (-0.008) (0.000) (0.000) (0.000)

𝑇 = 10 0.25 7.22 0.03 0.15 0.40 12.27 8.50 0.08 0.12 0.80
(0.000) (-0.006) (0.000) (0.000) (0.000) (0.010) (-0.007) (0.000) (0.000) (-0.001)

Note. Absolute bias in parentheses
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Table 5 shows that percentage bias in AMEs significantly increases across all procedures

when instruments are weak. Bias is between 140-620% and 29-660% for low and high endo-

geneity, respectively, for CL1. When FEs are Normal, the CL1 percentage bias generally reduces

for all time series dimensions in low and high endogeneity, although on the whole the bias is

still between 15-300% and 76-273% for low and high endogeneity, respectively.

Table 5: AME Percentage Bias Weak Instruments (𝜇 = 1)

(a) 𝜌 = 0.20

U(−.5, .5) N(0, 1)
𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

𝑇 = 2 620.24 238.23 17.11 676.44 182.02 360.33 197.78 0.30 285.06 320.03
(0.686) (0.264) (0.019) (0.748) (-0.202) (-0.332) (-0.182) (0.000) (-0.263) (-0.315)

𝑇 = 4 240.82 206.39 5.22 228.68 230.35 14.84 54.92 5.77 42.82 116.67
(-0.266) (-0.228) (0.006) (-0.253) (-0.255) (-0.014) (-0.051) (0.006) (-0.039) (-0.116)

𝑇 = 6 231.10 178.95 3.35 225.25 313.99 153.42 74.81 3.17 107.12 1, 814.84
(0.256) (0.198) (-0.004) (0.249) (0.349) (0.142) (0.069) (0.003) (0.099) (-1.728)

𝑇 = 8 483.69 454.59 7.41 496.95 1, 366.31 300.71 187.14 4.35 226.14 359.35
(-0.535) (-0.503) (0.008) (-0.550) (-1.514) (0.277) (0.173) (0.004) (0.208) (-0.352)

𝑇 = 10 142.95 118.02 0.14 141.06 60.99 213.25 147.89 7.28 173.86 94.18
(0.158) (0.131) (0.000) (0.156) (-0.067) (0.197) (0.136) (0.007) (0.160) (-0.091)

(b) 𝜌 = 0.99

U(−.5, .5) N(0, 1)
𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

𝑇 = 2 28.69 305.52 11.10 477.58 334.57 145.80 121.11 2.27 98.03 279.31
(0.025) (0.268) (0.010) (0.419) (-0.294) (-0.114) (-0.095) (0.002) (-0.077) (-0.228)

𝑇 = 4 663.80 544.78 2.48 620.82 54.76 76.14 102.28 11.12 89.78 316.05
(-0.583) (-0.478) (0.002) (-0.545) (-0.048) (-0.060) (-0.080) (0.009) (-0.070) (-0.260)

𝑇 = 6 222.18 196.11 6.42 203.15 590.05 234.35 160.61 1.43 196.78 607.24
(-0.195) (-0.172) (-0.006) (-0.178) (0.519) (0.184) (0.126) (0.001) (0.154) (-0.486)

𝑇 = 8 589.90 580.59 5.31 597.15 2, 265.88 199.55 132.96 7.94 159.25 379.65
(-0.518) (-0.510) (0.005) (-0.524) (1.991) (0.156) (0.104) (0.007) (0.125) (-0.309)

𝑇 = 10 268.49 237.34 2.08 269.09 8.77 273.13 246.12 5.94 258.08 286.42
(0.236) (0.208) (0.002) (0.236) (0.008) (-0.214) (-0.193) (0.005) (-0.202) (-0.231)

Note. Absolute bias in parentheses

This is a crucial finding because the CL1 procedure represents a realistic option for most

empirical applications using conditional logit. CL1 computed AMEs can be either upwards or

downwards biased depending on the time series dimension and so no general rule for contex-

tualising AMEs in applied work emerges from this analysis. The control function procedure in

this case fails to generate consistent AMEs given the weak instruments and lack of knowledge
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about the FEs, representing a significant empirical shortcoming of the CL with control function

in weak instrument environments.

Similar, but generally smaller, percentage bias levels are achieved in the CL2 and UCL pro-

cedures when instruments are weak. This illustrates the lack of a good alternative to simply

specifying the FEs as 0 as done in CL1. This is reinforced by the LPM bias, which can be up to

2300%. Again, the control function approach to removing endogeneity does not produce con-

sistent AMEs when instruments are weak. This is a particularly important finding overall given

AMEs are usually the primary object of interest in empirical evaluations of policies or treatments

in economics research.

Another interesting finding is the percentage bias for the CL-true specification, which as-

sumes full knowledge of true first-stage errors 𝑣𝑖𝑡 and the true FEs. Expectedly, the bias for

CL-true is much smaller across all time dimensions for low or high endogeneity and Uniform

or Normal generated FEs. However, the bias fluctuates rather dramatically from approximately

0% to about 12% in the Uniform FEs case. Depending on the setting, percentage bias on the

order of 12% may be significant. This demonstrates a novel finding for the binary outcome panel

weak instruments setting; that is, the control function procedure is unable to produce completely

reliable estimates of AMEs when instruments are weak even in the impossible scenario of perfect

knowledge.

AME bias fails to converge to 0 for the models as the time series dimension grows. These

results demonstrate that weak instruments can make AME estimates inconsistent for realistic

empirical models even when errors are homoskedastic in both stages. This analysis ultimately

raises questions about proper empirical conduct in the binary outcomepanel data case and how to

interpret econometric analyses relying on AMEs as the primary interpretation tool, particularly

when instruments are weak.

4.5.2 Heteroskedasticity

I expect misspecified heteroskedasticity to contaminate AME estimates in panel data in addition

to ex post facto assumptions about FEs as parameter estimators are inconsistent. This expectation

is also motivated by the individual heteroskedasticity cross section simulations in Appendix B.2,

where AMEs estimated from QMLE were inconsistent. Whether inconsistency in AMEs follows

through from inconsistent parameters is significant since AMEs are the primary interpretation

and recommendation tool in applied work.
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To test these expecations, I simulate the two-group heteroskedasticity model from subsec-

tion 3.2 𝑁 = 10, 000 times and compute true AMEs from Equation (4.3) and AMEs estimated

from QMLE that assumes homoskedastic errors when they are heteroskedastic. As in subsection

3.2, 𝛽 = 0.5, 𝜌 = 0.20 or 0.99, and 𝜉 is set such that 𝜇 = 500 (strong instruments) and 𝜇 = 1
(weak instruments). I estimate the models summarised in Table 3 to investigate how misspeci-

fied heteroskedasticity might further contaminate AME estimates beyond incorrect ex post facto

assumptions about FEs. The results of these simulations are summarised in Table 6 and 7 for

strong and weak instruments, respectively, for 𝑛 = 100 individuals each observed over 𝑇 = 10
periods.

Table 6: AME Bias Strong Instruments Heteroskedasticity (𝑛 = 100, 𝑇 = 10)

(a) 𝜌 = 0.20

U(−.5, .5) N(0, 1)
Het. Source 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

None 1.51 8.61 0.01 0.10 0.18 20.69 9.44 0.38 0.20 0.45
(0.002) (-0.009) (0.000) (0.000) (0.000) (0.019) (-0.009) (0.000) (0.000) (0.000)

𝜀𝑖𝑡 3.19 9.69 1.76 1.32 0.64 21.25 14.07 5.21 4.90 3.70
(0.004) (-0.012) (0.002) (-0.002) (0.001) (0.019) (-0.012) (0.005) (-0.004) (-0.003)

𝑣𝑖𝑡 2.08 1.60∗ 0.43 0.70 3.17 13.63∗ 16.36 0.40 16.63 14.91
(0.001) (0.000) (0.000) (0.000) (-0.001) (-0.004) (-0.004) (0.000) (-0.005) (-0.004)

(b) 𝜌 = 0.99

Het. Source 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

None 0.25 7.22 0.03 0.15 0.40 12.27 8.50 0.08 0.12 0.80
(0.000) (-0.006) (0.000) (0.000) (0.000) (0.010) (-0.007) (0.000) (0.000) (-0.001)

𝜀𝑖𝑡 0.39 8.75 0.55 0.99 0.81 7.81∗ 10.97 3.95 2.40 0.67∗

(0.000) (-0.007) (0.000) (-0.001) (0.001) (0.005) (-0.007) (-0.003) (-0.002) (0.000)

𝑣𝑖𝑡 17.59 21.59 1.01 34.03 25.09 14.65 13.64 0.93 33.39 37.89
(-0.002) (-0.003) (0.000) (-0.005) (-0.003) (-0.002) (-0.002) (0.000) (-0.004) (-0.005)

Note. The above table describes percentage and absolute bias in AME calculation under different error variance

misspecifications. The None row documents bias when both stages are homoskedastic, the 𝜀𝑖𝑡 row when the second-

stage errors are heteroskedastic, and the 𝑣𝑖𝑡 row when the first-stage errors are heteroskedastic. Absolute bias

reported in parentheses.

Table 6 shows that when instruments are strong, misspecified heteroskedasticity in either the

first- or second-stage generally increases AME bias across all models from when both stages

are correctly specified as homoskedastic. Exceptions are highlighted in the table with an aster-

isk. In addition, no clear pattern holds for whether a misspecified 𝑣𝑖𝑡 or 𝜀𝑖𝑡 is worse for AME

Page 26



4 MARGINAL EFFECTS Inference and Estimation in Panel BDV Models

estimates. For the most part, a misspecified 𝑣𝑖𝑡 yields less biased AMEs than 𝜀𝑖𝑡 misspecifica-

tion when 𝜌 = 0.20 and FEs are drawn from U(−0.5, 0.5). The opposite occurs for 𝜌 = 0.99
across both FE source distributions, which is intuitive given that first-stage misspecification

yields misshapen distributions while second-stage misspecification retains a fairly smooth and

Normal shape, shown in subsection 4.4.

An interesting pattern emerges for AMEs estimated from the CL-true procedure, which as-

sumes full knowledge of true first-stage errors and true FEs. The CL-true bias increases when

𝜀𝑖𝑡 is misspecified across low and high endogeneity regardless of the FE source distribution.

This is because the only estimated object in the CL-true AME is the parameter estimate, which

is inconsistent with misspecified 𝜀𝑖𝑡 and consistent with misspecified 𝑣𝑖𝑡. Hence, misspecified

heteroskedasticity clearly contaminates AMEs even when instruments are strong.

Table 7 shows that when instruments are weak, misspecified heteroskedasticity in either the

first- or second-stage generally increases AME bias from the correctly specified homososkedas-

tic case, as before. For example, AME percentage bias in misspecified LPM procedures increases

by approximately 25 times when endogeneity is low and by up to 200 times when endogeneity

is high.

The exceptions to this, however, are more numerous than when instruments were strong.

Indeed, sometimes AME bias is much smaller with misspecified errors. For example, when

𝑣𝑖𝑡 is heteroskedastic, 𝜌 = 0.20, and FEs are drawn from N(0, 1), the AME percentage bias

decreases by between 150-210 percentage points for the CL1, CL2, and UCL procedures, while

the CL-true bias decreases from 7% to 4%. The bias from LPM procedures decreases by about

70 and 160 percentage points for low and high endoegeneity, resepectively. Furthermore, CL-

true bias decreases across both low and high endogeneity regimes when FEs are drawn from

N(0, 1) while it increases for when FEs are drawn from U(−0.5, 0.5). This is surprising and

contradicts the findings for when instruments are strong.

However, on average, the AME percentage bias increases on average by a factor of 2-20

across all models when there is variance misspecification, although there are exceptions to this.

It might be too hasty to say that misspecified heteroskedasticity is always a problem for AME

estimates, although this seems approximately true. Given the extremely high levels of bias across

almost estimated models, however, these results raise fundamental questions about how reliable

econometric analyses using AMEs to interpret results and make recommendations in the binary

outcome panel data environment truly are, particularly when instruments are weak.
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Table 7: AME Bias Weak Instruments Heteroskedasticity (𝑛 = 100, 𝑇 = 10)

(a) 𝜌 = 0.20

U(−.5, .5) N(0, 1)
Het. Source 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

None 142.95 118.02 0.14 141.06 60.99 213.25 147.89 7.28 173.86 94.18
(0.158) (0.131) (0.000) (0.156) (-0.067) (0.197) (0.136) (0.007) (0.160) (-0.091)

𝜀𝑖𝑡 61.44∗ 38.95∗ 3.62 52.12∗ 1, 685.52 725.60 510.12 4.77∗ 556.78 493.11
(0.086) (0.054) (-0.005) (0.073) (-2.357) (-0.576) (-0.405) (0.004) (-0.442) (-0.392)

𝑣𝑖𝑡 218.35 214.84 9.96 218.47 1, 140.71 3.77∗ 4.54∗ 4.74∗ 2.98∗ 21.56∗

(0.060) (0.059) (-0.030) (0.060) (-0.315) (0.001) (-0.001) (-0.001) (0.001) (-0.006)

(b) 𝜌 = 0.99

Het. Source 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM 𝐶𝐿1 𝐶𝐿2 𝐶𝐿-true 𝑈𝐶𝐿 LPM

None 268.49 237.34 2.08 269.09 8.77 273.13 246.12 5.94 258.08 286.42
(0.236) (0.208) (0.002) (0.236) (0.008) (-0.214) (-0.193) (0.005) (-0.202) (-0.231)

𝜀𝑖𝑡 297.94 259.95 11.24 289.10 1, 833.80 792.12 644.58 7.14∗ 695.13 602.20
(0.228) (0.199) (-0.009) (0.221) (-1.405) (-0.499) (-0.406) (-0.004) (-0.438) (-0.379)

𝑣𝑖𝑡 2, 931.35 3, 019.33 17.84 3, 439.91 208.96 298.28 280.90 3.66∗ 188.05∗ 111.03∗

(-0.390) (-0.401) (-0.002) (-0.457) (-0.028) (0.040) (0.037) (0.000) (0.025) (0.015)

Note. The above table describes percentage and absolute bias in AME calculation under different error variance

misspecifications. The None row documents bias when both stages are homoskedastic, the 𝜀𝑖𝑡 row when the second-

stage errors are heteroskedastic, and the 𝑣𝑖𝑡 row when the first-stage errors are heteroskedastic. Absolute bias

reported in parentheses.

5 Empirical Application

I illustrate the AR test by estimating confidence intervals for the central specifications in Nunn

and Qian (2014), who attempt to quantify the causal effect of food aid on the probability of civil

conflict in the next period. My focus is on their model for civil conflict incidence, described in

Equation (5.1) and (5.2). Confidence intervals are constructed as discussed in subsection 2.6.

The full sample contains data on 125 non-OECD countries over the period 1971 − 2006. An

observation is a country-year pair, and there are 4089 observations. Conflict data are sourced

from the Uppsala Conflict Data Program/Peace Research Institute Oslo (UCDP/PRIO) Armed

Conflict Dataset Version 4-2010 while the US food aid measure data are sourced from the Food

and Agriculture Organization’s (FAO) FAOSTAT database.

Countries are classified into their respective World Bank regions: South Asia, Sub-Saharan

Africa, Europe and Central Asia, Middle East and North Africa, Latin America and Caribbean,

and East Asia and Pacific. Conflicts are defined as the use of armed force between two parties
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causing at least 25 battle deaths in a year and are categorised as intrastate (civil wars), interstate,

extrasystemic, and internationalised 1. Food aid is measured by volume of US wheat aid in

metric tonnes.

The IV model is

𝐶𝑖𝑟𝑡 = 𝛽𝐹𝑖𝑟𝑡 + X𝑖𝑟𝑡Γ + 𝜑𝑟𝑡 + 𝜓𝑖𝑟 + 𝑒𝑖𝑟𝑡 (5.1)

𝐹𝑖𝑟𝑡 = 𝛼(𝑃𝑡−1 × �̄�𝑖𝑟) + X𝑖𝑟𝑡Γ + 𝜑𝑟𝑡 + 𝜓𝑖𝑟 + 𝑣𝑖𝑟𝑡 (5.2)

for country 𝑖 in region 𝑟 in time 𝑡. In the second-stage, 𝐶𝑖𝑟𝑡 is the existence of civil conflict (0 or

1), 𝐹𝑖𝑟𝑡 is food-aid, 𝛽 is the parameter of interest, X𝑖𝑟𝑡 is the matrix of controls (e.g. GDP in the

US, temperature and precipitation, Democrat US president), 𝜑𝑟𝑡, 𝜓𝑖𝑟 are fixed effects and 𝑒𝑖𝑟𝑡 is

an error term. 𝑃𝑡−1 × �̄�𝑖𝑟 is the instrument, where �̄�𝑖𝑟 is the probability of receiving US wheat

aid and 𝑃𝑡−1 is US wheat production in the previous year. Summary statistics are provided in

Appendix B.3.

The authors estimate cluster robust standard errors at the country level. Following the discus-

sion in Section 3 and 4, I assume that second-stage errors 𝑒𝑖𝑟𝑡 are conditionally homoskedastic

and have control function 𝑒𝑖𝑟𝑡 = 𝜌𝑣𝑖𝑟𝑡 + 𝜀𝑖𝑟𝑡. This means that I assume 𝜀𝑖𝑟𝑡 is homoskedastic

across individuals while 𝑣𝑖𝑟𝑡 is clustered at the country level. Hence, to estimate the AR inter-

vals from Equation (2.6) and (2.7), I compute the cluster robust variance of the instrument and

the standard variance of the reduced-form parameters.

5.1 Incidence Model

Nunn and Qian (2014)’s main goal is to quantify the causal effect of increased food aid on civil

conflict incidence. I focus on the three following baseline specifications captured by Equation

(5.1) and (5.2). (1) Country FE, whose only control variables are country and region-year level

FEs; (2) Most Controls, which includes a range of economic (real US GDP per capita, oil price,

Avg. US economic aid), political (Avg. US military aid, US Democratic President), and weather

(monthly recipient temperature, weather, and precipitation) control variables; and (3) Full Con-

trols, which includes the whole suite of controls including country, year, and region fixed effects.

I chose these specifications for two reasons. Firstly, these specifications demonstrate the au-

thors central conclusion that increased food aid increases civil conflict incidence; and secondly,
1UCDP/PRIO (2010) defines extrasysemic conflicts as “between a state and a non-state group outside its own

territory” and internationalised conflicts as“between the government of a state and one or more internal opposition

group(s) with intervention from other states... on one or both sides”.
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the first-stage 𝐹 -statistics vary between strong (> 10) and weak (< 10), adding to the analysis

of standard weak instrument detection practice. Parameter estimates are available in Appendix

B.4. The cluster robust interval is a 𝑡-test where standard errors are clustered at the country level.

Note that the second-stage is estimated via a LPM.

Table 8 shows that the AR confidence intervals are wider than those obtained from standard

inference. Generally, the increased width comes from the upper bound. Of particular note is

the 99% Country FE AR interval which has an unbounded upper bound and is indicative of

extremely weak instruments. The 95% AR intervals are approximately 1.5-3 times wider than

CR and 2-6 times wider than standard 𝑡-test intervals. Similar results hold for the 99% intervals,

where the AR intervals are about twice as wide as CR intervals and 3 times as wide as the 𝑡-test

intervals. The significantly greater width in all confidence intervals justifies the test’s importance

for evaluating applied research in binary outcome panel data environments.

Estimated with standard errors clustered at the country level in the second-stage, the cluster

robust (CR) intervals assume that second-stage errors are heteroskedastic. However, parameter

estimates can be inconsistent when this assumption is made as shown in section 3.

Table 8: 95% and 99% Confidence Intervals – Incidence Specification

(LPM)

Interval Statistic Country FE Most Controls Full Controls

95% 𝑡-test (2.09, 5.19) (2.07, 4.80) (1.71, 4.27)
CR (0.23, 7.05) (1.36, 5.51) (1.11, 4.87)
AR (1.59, 20.03) (1.74, 8.17) (1.43, 7.45)

99% 𝑡-test (1.68, 5.68) (1.64, 5.23) (1.30, 4.67)
CR (−0.84, 8.13) (0.70, 6.16) (0.51, 5.46)
AR (−∞, ∞) (1.36, 13.16) (1.08, 12.47)
𝐹 -statistic 5.84 12.76 12.10

Note. All bounds in the confidence intervals are multiplied by 1000 to ease presenta-

tion.
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6 Conclusion

I make three distinct contributions to the inference and estimation of causal effects from binary

outcome panel data. Firstly, by implementing an estimation procedure which does not estimate

FEs in the second-stage, I proposed a test which performs inference on the distance between the

consistently estimated structural- and reduced-form parameters. The test has the correct size

regardless of instrument strength and under different error distributions in simulated panel data,

while standard Wald tests can severely over-reject the true null hypothesis.

I applied the test to the central specifications in Nunn and Qian (2014) who argue that in-

creased food aid causes a statistically significant increase in the probability of civil conflict in a

panel of 125 non-OECD countries. Confidence intervals estimated by the robust test are up to 6

times as wide as those estimated by standard methods. The significant extra width in the robust

confidence intervals illustrate the importance of the test in empirical work when there is doubt

about instrument strength.

Secondly, I proved that quasi-maximum likelihood estimation (QMLE) that disregards het-

eroskedasticity can produce inconsistent parameter estimates. Recall the control function for-

mulation of second-stage errors 𝑢𝑖𝑡 = 𝜌𝑣𝑖𝑡 + 𝜀𝑖𝑡, where 𝑣𝑖𝑡 and 𝜀𝑖𝑡 are the idiosyncratic first- and

second-stage error components and 𝜌 measures the degree of endogeneity. Parameter estimators

are inconsistent if a heteroskedastic 𝜀𝑖𝑡 is misspecified as homoskedastic. However, parameter

estimators remain consistent when a heteroskedastic 𝑣𝑖𝑡 is misspecified as homoskedastic. My

conclusions question the estimation of, and inference about, causal relationships estimated from

binary outcome panel data with with linear and nonlinear IV models.

Thirdly, average marginal effects (AMEs) estimated from QMLE that ignores heteroskedas-

ticity can also be inconsistent, even when instruments are strong. For example, simulations of a

two-group heteroskedasticity cross sectional model showed that AMEs estimated from QMLE

are consistent. However, AMEs can be inconsistent when individual heteroskedasticity is ig-

nored.

As the proposed conditional logit procedure does not estimate FEs, I investigated the accu-

racy of AMEs estimated from panel data under different assumptions about the FEs. I found

that QMLE ignoring error heteroskedasticity contaminates AME estimates beyond these ex post

facto assumptions about FEs. Generally, percentage bias increases by a factor of between 2-20

regardless of instrument strength, although there are exceptions that cannot be explained by the

presented analysis. Conditional logit estimated AMEs that assume perfect knowledge of true
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FEs and first-stage errors can still be biased by up to 12% when instruments are weak. Under

different assumptions about the FEs, conditional logit estimated AMEs can be up to 660% bi-

ased in the presence of weak instruments. AMEs computed from standard logit that controls for

FEs with dummy variables is between 100-670% biased depending on the FE source distribution

and the panel dimension. I also found that AMEs estimated from LPMs, a popular estimation

method in applied research, can be up to 2,300% biased in the presence of weak instruments.

These results raise fundamental questions about how to interpret empirical analyses that report

AMEs when there is doubt about instrument strength.

There are two immediate extensions of this research. Firstly, as I only explored LPMs, con-

ditional logit, and logit, future research must evaluate if similar levels of bias in AMEs feature

in other estimation models such as probit or tobit. This is the first step in possibly providing al-

ternative estimation procedures that reduce bias and improve the credibility of applied research.

At the very least, studying other nonlinear estimation procedures puts the highlighted estima-

tion issues into perspective given the broad range of models used in modern empirical research.

The second extension of this research is further analysing how misspecified heteroskedastic-

ity complicates AME estimation, particularly in panel models. Indeed, studying the conditions

when ignoring heteroskedasticity actually improves AME estimation is greatly needed, given

the results in subsection 4.5.2.

It is my hope that the presented results provide both a better appreciation of and the tools

to help guard against the weak instrument problem in binary outcome panel data. Recognising

the ways in which the econometric analysis of binary outcome panel data can fail is critical for

economics going forward to support its claim as an evidence based social science.
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A Appendix A

A.1 Conditional Logit

The conditional logit (CL) is used to estimate the second-stage in Equation (2.2) and (2.4) pre-

cisely because it does not estimate the FEs. The main benefit of using CL avoids the incidental

parameters problem contaminating standard logit estimated parameters. Consider a panel of 𝑖
individuals each observed for 𝑇 periods, where ℙ(𝑦𝑖𝑡 = 1|x𝑖𝑡, 𝛼𝑖) = Λ(x𝑖𝑡𝜷 + 𝛼𝑖), where Λ(⋅) is

the Logistic function. I condition on 𝑛𝑖 ≡ ∑𝑇
𝑖=1 𝑦𝑖𝑡. Let x𝑖 = (𝑥𝑖1, ..., 𝑥𝑖𝑇 )′ and

𝑦𝑖𝑡 =
⎧⎪
⎨
⎪⎩

1 𝑦∗
𝑖𝑡 > 0

0 𝑦∗
𝑖𝑡 ≤ 0

Individual 𝑖’s contribution to the likelihood is then

ℙ(𝑦𝑖1 = 𝑦1, ..., 𝑦𝑖𝑇 |x𝑖, 𝛼𝑖, 𝑛𝑖 = 𝑛) = ℙ(𝑦𝑖1 = 𝑦1, ..., 𝑦𝑖𝑇 = 𝑦𝑇 |x𝑖, 𝛼𝑖)
ℙ(𝑛𝑖 = 𝑛|x𝑖, 𝛼𝑖)

=
∏𝑇

𝑡=1 ℙ(𝑦𝑖𝑡 = 𝑦𝑡|x𝑖, 𝛼𝑖)
ℙ(𝑛𝑖 = 𝑛|x𝑖, 𝛼𝑖)

Assumption (2.1) and (2.3) in subsection 2.2 yield ℙ(𝑦𝑖𝑡 = 𝑦𝑡|x𝑖, 𝛼𝑖) = Λ(x𝑖𝛽 + 𝛼𝑖) where 𝑦𝑡 ∈
{0, 1}. The numerator then has form

𝑇

∏
𝑡=1

ℙ(𝑦𝑖𝑡 = 𝑦𝑡|x𝑖, 𝛼𝑖) =
𝑇

∏
𝑡=1

Λ(x𝑖𝑡𝛽 + 𝛼𝑖)𝑦𝑡[1 − Λ(x𝑖𝑡𝛽 + 𝛼𝑖)]1−𝑦𝑡

=
𝑇

∏
𝑡=1

{
exp(x𝑖𝑡𝛽 + 𝛼𝑖)

1 + exp(x𝑖𝑡𝛽 + 𝛼𝑖)}
𝑦𝑡

{1 − exp(x𝑖𝑡𝛽 + 𝛼𝑖)
1 + exp(x𝑖𝑡𝛽 + 𝛼𝑖)}

1−𝑦𝑡
, or simply

=
∏𝑇

𝑡=1 exp(x𝑖𝑡𝛽 + 𝛼𝑖)𝑦𝑡

∏𝑇
𝑡=1(1 + exp(x𝑖𝑡𝛽 + 𝛼𝑖))

The product in the numerator will only multiply those time series observations such that 𝑦𝑡 = 1.

Define y𝑖 = (𝑦𝑖1, 𝑦𝑖2, ..., 𝑦𝑖𝑇 )′ and 𝜶𝑖 = (𝛼𝑖, ..., 𝛼𝑖)′. Hence, I express

𝑇

∏
𝑡=1

exp(x𝑖𝑡𝜷 + 𝛼𝑖)𝑦𝑡 = exp (
𝑇

∑
𝑡=1

[x𝑖𝑡𝜷 + 𝛼𝑖]) = exp (y𝑖[x𝑖𝜷 + 𝜶])

To simplify expression, let

𝐷(𝜷, 𝛼𝑖) =
𝑇

∏
𝑡=1

[1 + exp(x𝑖𝑡𝜷 + 𝛼𝑖)]
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Then
𝑇

∏
𝑡=1

ℙ(𝑦𝑖𝑡 = 𝑦𝑡|x𝑖, 𝛼𝑖) =
exp(y′

𝑖 (x𝑖𝜷 + 𝜶𝑖))
𝐷(𝜷, 𝛼𝑖)

=
exp(y′

𝑖 x𝑖𝜷 + 𝑛𝑖𝛼𝑖)
𝐷(𝜷, 𝛼𝑖)

(A.1)

The denominator, ℙ(𝑛𝑖 = 𝑛|x𝑖, 𝛼𝑖) is the disjoint union of all distinct strings of 0s and 1s of

length 𝑇 . Let 𝑅𝑖 be the subset of the 𝑇 -dimensional Euclidean space ℝ𝑇 with elements a such

that 𝑎𝑡 ∈ {0, 1} and ∑𝑇
𝑡=1 𝑎𝑡 = 𝑛𝑖. Simply, a is a 𝑇 -dimensional vector of zeroes and ones where

there are 𝑛𝑖 ones. Then

ℙ(𝑛𝑖 = 𝑛|x𝑖, 𝛼𝑖) =
∑a∈𝑅𝑖

exp(a′(x𝑖𝜷 + 𝜶𝑖))
𝐷(𝜷, 𝛼𝑖)

=
∑a∈𝑅𝑖

exp(a′x𝑖𝜷 + 𝑛𝑖𝛼𝑖)
𝐷(𝜷, 𝛼𝑖)

(A.2)

Taking the ratio of (A.1) and (A.2)

∏𝑇
𝑡=1 ℙ(𝑦𝑖𝑡 = 𝑦𝑡|x𝑖, 𝛼𝑖)
ℙ(𝑛𝑖 = 𝑛|x𝑖, 𝛼𝑖)

=
exp(y′

𝑖 x𝑖𝜷+𝑛𝑖𝛼𝑖)
𝐷(𝜷,𝛼𝑖)

∑a∈𝑅𝑖 exp(a′(x𝑖𝜷)+𝑛𝑖𝛼𝑖)
𝐷(𝜷,𝛼𝑖)

=
exp(𝑛𝑖𝛼𝑖) exp(y′

𝑖 x𝑖𝜷)
exp(𝑛𝑖𝛼𝑖) ∑a∈𝑅𝑖

exp(a′x𝑖𝜷)

=
exp(y′

𝑖 x𝑖𝜷)
∑a∈𝑅𝑖

exp(a′x𝑖𝜷)

So the contribution of individual 𝑖 to the overall log-likelihood is

ℓ𝑖 = log { exp(y′
𝑖 x𝑖𝜷)[ ∑

a∈𝑅𝑖

exp(a′x𝑖𝜷)]
−1

}

where

𝑅𝑖 = {a ∈ ℝ𝑇 ∶ 𝑎𝑡 ∈ {0, 1} and
𝑇

∑
𝑡=1

𝑎𝑡 = 𝑛𝑖}

A.2 The Test

Consider the following reduced-form representation of Equation (2.1) and (2.2) with included

control variables 𝑤𝑖𝑡

𝑦∗
𝑖𝑡 = 𝑧𝑖𝑡𝛿𝑧 + 𝑤𝑖𝑡𝛿𝑤 + 𝑣𝑖𝑡𝛿𝑣 + 𝑐𝑖 + 𝜀𝑖𝑡

𝑥𝑖𝑡 = 𝑧𝑖𝑡𝜋𝑧 + 𝑤𝑖𝑡𝜋𝑤 + 𝑏𝑖 + 𝑣𝑖𝑡

Define z = (𝑧, 𝑤), 𝜹 = (𝛿′
𝑧, 𝛿′

𝑤, 𝛿′
𝑣)′, 𝝅 = (𝜋𝑧, 𝜋𝑤), 𝜹z = (𝛿′

𝑧, 𝛿′
𝑤)′, and 𝜽 = (𝜹′;𝝅′)′. This rep-

resentation encompasses both the panel and cross section case. To focus the discussion on the

panel case, I model the likelihood with a conditional logit first-stage and a linear second-stage.
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The conditional logit is justified as fixed effects are not estimated, as demonstrated previously.

As I am estimating a two-step regression, individual 𝑖’s contribution to the log-likelihood has two

components. The first, deriving from the first-stage which regresses the endogenous variables

on the instrument, comes from a linear regression likelihood and is from the Normal distribu-

tion. The second component, deriving from the control function second-step is from the condi-

tional logit procedure described above. Hence, the whole two-step procedure has log-likelihood

ℓ𝑖(𝜽) = (ℓ(2)
𝑖 (𝜹)′, ℓ(1)

𝑖 (𝝅)′)
′ with score function 𝜕ℓ𝑖(𝜽)

𝜕𝜽 = g𝑖(𝜹;𝝅) = (s𝑖(𝜹; �̂�)′, r𝑖(𝝅)′)
′, where

ℓ(𝑗) is the log-likelihood of the 𝑗𝑡ℎ step. Note, s𝑖(𝜹; �̂�) is the score of the second-stage and r𝑖(𝝅)
is the score of the first-stage. First, I simplify s𝑖(𝜹) as follows

s𝑖(𝜹; �̂�) = ∇𝜹ℓ(2)
𝑖 (𝜹)′ = 𝜕

𝜕𝜹[ log { exp(𝑦′
𝑖 (z𝑖𝜹z + 𝑣𝑖𝛿𝑣))[ ∑

a∈𝑅𝑖

exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣))]
−1

}]
′

= 𝜕
𝜕𝜹[𝑦′

𝑖 (z𝑖𝜹z + 𝑣𝛿𝑣) − log { ∑
a∈𝑅𝑖

exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣))}]
′

and differentiation provides

s𝑖(𝜹; �̂�) = ∇𝜹ℓ(2)
𝑖 (𝜹)′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z′
𝑖 (𝑦𝑖 −

∑a∈𝑅𝑖
a exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣))

∑a∈𝑅𝑖
exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣)) )

𝑣′
𝑖 (𝑦𝑖 −

∑a∈𝑅𝑖
a exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣))

∑a∈𝑅𝑖
exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣)) )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

z′
𝑖 ̃𝜀(ℎ𝑖)

𝑣′
𝑖 ̃𝜀(ℎ𝑖)

⎤
⎥
⎥
⎦

where

̃𝜀(ℎ𝑖) = 𝑦𝑖 −
∑a∈𝑅𝑖

a exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣))
∑a∈𝑅𝑖

exp(a′(z𝑖𝜹z + 𝑣𝑖𝛿𝑣))
is the second-stage generalised residual. As the first-stage is linear, the first-stage score function

r𝑖(𝝅) = ∇𝝅ℓ(1)(𝝅)′ has representation like above, i.e., r𝑖(𝝅) = vec[z′
𝑖 𝑣𝑖]. Furthermore, let

s𝑛(𝜹) = ∑𝑛
𝑖=1 s𝑖(𝜹) and r𝑛(𝝅) = ∑𝑛

𝑖=1 r𝑖(𝝅) where s𝑖(𝜹) = (𝑠𝑖1(𝜹), 𝑠𝑖2(𝜹), ..., 𝑠𝑖𝑇 (𝜹))′ and r𝑖(𝝅) =
(𝑟𝑖1(𝝅), 𝑟𝑖2(𝝅), ..., 𝑟𝑖𝑇 (,𝜋))′ . From the generalised residual form of the score I can derive the

Hessian by noting that 𝜕r
𝜕𝜹′ = 0

𝐻𝑛 =
⎡
⎢
⎢
⎣

𝜕s𝑛
𝜕𝜹′

𝜕s𝑛
𝜕𝝅′

𝜕r𝑛
𝜕𝜹′

𝜕r𝑛
𝜕𝝅′

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐻𝜹𝜹,𝑛 𝐻𝜹𝝅,𝑛

0 𝐼 ⊗ (z′z)

⎤
⎥
⎥
⎦

(A.3)

The asymptotic distribution of the scores as:

1
√𝑛

⎛
⎜
⎜
⎝

s𝑛(𝜹,𝝅)
r𝑛(𝝅)

⎞
⎟
⎟
⎠

⟶𝑑 N(
⎡
⎢
⎢
⎣

0
0

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

𝐺 0
0 Γ

⎤
⎥
⎥
⎦

) = N(0,𝛀)
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Where

𝐺 = lim
𝑛→∞

1
𝑛

𝑛

∑
𝑖=1

𝔼[s𝑖s′
𝑖 |z𝑖, 𝑣𝑖], and Γ = lim

𝑛→∞
1
𝑛

𝑛

∑
𝑖=1

𝔼[r𝑖r′
𝑖 |z𝑖, 𝑣𝑖]

The control function approach yields the block diagonal variance-covariance matrix. This is

especially useful as now I can derive the asymptotic distribution of the reduced-form parameter

estimator

√𝑛
⎛
⎜
⎜
⎝

�̂� − 𝜹
�̂� − 𝝅

⎞
⎟
⎟
⎠

=𝑎 −(
1
𝑛𝐻𝑛)

−1 1
√𝑛

⎛
⎜
⎜
⎝

s𝑛(𝜹,𝝅)
r𝑛(𝝅)

⎞
⎟
⎟
⎠

= −(
1
𝑛

⎡
⎢
⎢
⎣

𝐻𝜹𝜹,𝑛 𝐻𝜹𝝅,𝑛

0 𝐼 ⊗ (z′z)

⎤
⎥
⎥
⎦

)
−1 1

√𝑛

⎛
⎜
⎜
⎝

s𝑛(𝜹,𝝅)
r𝑛(𝝅)

⎞
⎟
⎟
⎠

Using the chain rule, ̃𝜀(ℎ𝑖)
𝜕𝜹 = 𝜎𝑖

𝜕ℎ𝑖
𝜕𝜹 and ̃𝜀(ℎ)

𝜕𝝅 = −𝛿𝑣 ⊗ z, where 𝜎𝑖 = 𝜕 ̃𝜀(ℎ𝑖)
𝜕ℎ𝑖

. Define 𝚺 = diag(𝜎𝑖),
yielding the following expression for the Hessian

𝐻 =
⎡
⎢
⎢
⎢
⎢
⎣

z′𝚺z z′𝚺𝑣 −𝛿′
𝑣 ⊗ z′𝚺z

𝑣′𝚺z 𝑣′𝚺𝑣 −𝛿′
𝑣 ⊗ 𝑣′𝚺z

0 0 𝐼 ⊗ (z′z)

⎤
⎥
⎥
⎥
⎥
⎦

(A.4)

Thus, 𝐻−1
𝑛 may be found by the properities of upper-diagonal block matrices

𝐻−1
𝑛 =

⎡
⎢
⎢
⎣

𝐻−1
𝜹𝜹,𝑛 −𝐻−1

𝜹𝜹,𝑛𝐻𝜹𝝅,𝑛(𝐼 ⊗ z′z)−1

0 (𝐼 ⊗ z′z)−1

⎤
⎥
⎥
⎦

I define 1
𝑛z′z →𝑝 𝑄, 1

𝑛𝐻𝜹𝜹,𝑛 →𝑝 𝐻𝜹𝜹, and 1
𝑛𝐻𝜹𝝅,𝑛 →𝑝 𝐻𝜹𝝅 . The Continuous Mapping Theorem

implies 1
𝑛𝐻−1

𝜹𝜹,𝑛 →𝑝 𝐻−1
𝜹𝜹 and 1

𝑛𝐻−1
𝜹𝝅,𝑛 →𝑝 𝐻−1

𝜹𝝅 . Hence 𝐻−1
𝑛 →𝑝 𝐻−1 where

𝐻−1 =
⎡
⎢
⎢
⎣

𝐻−1
𝜹𝜹 −𝐻−1

𝜹𝜹 𝐻𝜹𝝅(𝐼 ⊗ 𝑄)−1

0 (𝐼 ⊗ 𝑄)−1

⎤
⎥
⎥
⎦

and so the asymptotic distribution is

√𝑛
⎛
⎜
⎜
⎝

�̂� − 𝜹
�̂� − 𝝅

⎞
⎟
⎟
⎠

=𝑎 −𝐻−1 1
√𝑛

⎡
⎢
⎢
⎣

s(𝜹,𝝅)
r(𝝅)

⎤
⎥
⎥
⎦

Furthermore, Slutsky’s theorem asserts that

√𝑛
⎛
⎜
⎜
⎝

�̂� − 𝜹
�̂� − 𝝅

⎞
⎟
⎟
⎠

→𝑑 N(0, 𝐻−1𝛀[𝐻−1]′)
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To find 𝐻−1𝛀[𝐻−1]′, note that sr′ = 0 due to the control function procedure, meaning any

cross terms reduce to 0. Hence

𝐻−1𝛀[𝐻−1]′ =
⎡
⎢
⎢
⎣

𝐻−1
𝜹𝜹 −𝐻−1

𝜹𝜹 𝐻𝜹𝝅(𝐼 ⊗ 𝑄)−1

0 (𝐼 ⊗ 𝑄)−1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐺 0
0 Γ

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐻−1
𝜹𝜹 −𝐻−1

𝜹𝜹 𝐻𝜹𝝅(𝐼 ⊗ 𝑄)−1

0 (𝐼 ⊗ 𝑄)−1

⎤
⎥
⎥
⎦

′

This greatly simplifies the expression to

=
⎡
⎢
⎢
⎣

𝐻−1
𝜹𝜹 𝐺𝐻−1

𝜹𝜹 + 𝐻−1
𝜹𝜹 𝐻𝜹𝝅(𝐼 ⊗ 𝑄)−1Γ(𝐼 ⊗ 𝑄′)−1𝐻𝜹𝝅𝐻−1

𝜹𝜹 𝐻−1
𝜹𝜹 𝐻𝜹𝝅(𝐼 ⊗ 𝑄)−1Γ(𝐼 ⊗ 𝑄′)−1

(𝐼 ⊗ 𝑄)−1Γ(𝐼 ⊗ 𝑄)−1𝐻𝜹𝝅𝐻−1
𝜹𝜹 (𝐼 ⊗ 𝑄)−1Γ(𝐼 ⊗ 𝑄)−1

⎤
⎥
⎥
⎦

Let Λ𝝅𝝅 = (𝐼 ⊗ 𝑄)−1Γ(𝐼 ⊗ 𝑄)−1. Recall that 𝐻𝜹𝝅 = vec(−𝛿′
𝑣 ⊗ z′𝚺z, −𝛿′

𝑣 ⊗ 𝑣′𝚺z) and 𝐻𝜹𝜹 is

the left-upper-square block matrix. Hence, 𝐻−1
𝜹𝜹 𝐻𝜹𝝅 = −𝛿′

𝑣 ⊗ 𝐼𝑘. I then simplify to:

𝐻−1𝛀[𝐻−1]′ =
⎡
⎢
⎢
⎣

𝐻−1
𝜹𝜹 𝐺𝐻−1

𝜹𝜹 + (𝛿′
𝑣 ⊗ 𝐼𝑘)Λ𝝅𝝅(𝛿𝑣 ⊗ 𝐼𝑘) (𝛿′

𝑣 ⊗ 𝐼𝑘)Λ𝝅𝝅

Λ𝝅𝝅(𝛿𝑣 ⊗ 𝐼𝑘) Λ𝝅𝝅

⎤
⎥
⎥
⎦

(A.5)

An initial discussion of Equation (A.5) is required. Firstly, when using the two-step estimation

procedure with a conditional logit second stage, the first element is easily estimable from stan-

dard statistical software. Assuming the likelihood is correctly specified, the Information Matrix

Equality (IME) states that the inverse Hessian is equal to the outer product of the gradient func-

tion. Hence, the first term, 𝐻−1
𝜹𝜹 𝐺𝐻−1

𝜹𝜹 = 𝐻−1
𝜹𝜹 is just the estimated variance from standard

packages. Λ𝝅𝝅 can be derived from the variance of the first stage via the following algorithm

1. Estimate the OLS variance, called 𝑉1. Alternatively, if estimated via a correctly specified

likelihood, the (IME) states that inverse Hessian matrix is equal to the outer product of

the score. Hence, I simply estimate Γ = 𝑁−1 ∑𝑁
𝑖=1 r𝑖r′

𝑖 .

2. Now, estimate 𝐻𝜹𝝅 . This is fairly simple as it is the gradient of the second-stage score,

s(𝜹, �̂�), with respect to 𝝅. Call this matrix 𝐹 = 𝑁−1 ∑𝑁
𝑖=1 ∇𝝅s𝑖(𝜹, �̂�)

3. Then, the correct variance for second stage estimator 𝜹 is 𝐻−1
𝜹𝜹 𝐺𝐻−1

𝜹𝜹 + 𝐻−1
𝜹𝜹 𝐹 Γ𝐹 ′𝐻−1

𝜹𝜹

This algorithm is equivalent to the corrected two-step M-estimator variance proposed in Wooldridge

(2010) in section 12.4.2 and 12.5.2. Briefly, Wooldridge (2010) uses a first-order expansion to

derive the following:

1
√𝑛

𝑛

∑
𝑖=1

s𝑖(𝜹; �̂�) = 1
√𝑛

𝑛

∑
𝑖=1

s𝑖(𝜹;𝝅∗) + 𝐹0√𝑛(�̂� − 𝝅∗) + 𝑜𝑝(1)
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Where 𝐹0 = 𝔼[∇𝝅s(𝜹;𝝅∗)]. I assume that for a first-stage OLS

√𝑛(�̂� − 𝝅∗) = 1
√𝑛

𝑛

∑
𝑖=1

r𝑖(𝝅∗) + 𝑜𝑝(1)

where r are first-stage scores. Then, defining q𝑖(𝜹;𝝅) ≡ s𝑖(𝜹;𝝅)+𝐹0r𝑖(𝝅∗). Taking 𝔼[q𝑖(𝜹;𝝅)q𝑖(𝜹;𝝅)′],
and eliminating cross-terms between r𝑖 and s𝑖 yields the corrected variance 𝕍 [𝜹] = 𝐻−1

𝜹𝜹 (𝐺 +
𝐹 Γ𝐹 ′)𝐻−1

𝜹𝜹 , equivalent to above. From here, I derive the asymptotic variance of the link func-

tion 𝑟(𝛿, 𝛽) = 𝛿 − 𝜋𝛽, denoted Ψ(𝛽0) by pre-multiplying (A.5) by [(1 − 𝛽′
0) ⊗ (𝐼𝑘𝑧 0)] and

post-multiplying by [(1 − 𝛽′
0)′ ⊗ (𝐼𝑘𝑧 0)′]

Ψ(𝛽0) = 𝐻−1
𝜹𝜹 𝐺𝐻−1

𝜹𝜹 + [(𝛿𝑣 − 𝛽0)′ ⊗ 𝐼𝑘𝑧]Λ𝜋𝜋[(𝛿𝑣 − 𝛽0) ⊗ 𝐼𝑘𝑧] (A.6)

Which is then used to calculate the Anderson-Rubin type test

𝐴𝑅(𝛽0) = ( ̂𝛿 − ̂𝜋𝛽0)′[Ψ̂(𝛽0)]−1( ̂𝛿 − ̂𝜋𝛽0) (A.7)

where Ψ̂(𝛽0) is the estimate of Ψ(𝛽0), obtained from replacing 𝐻𝜹𝜹, 𝐺, 𝛿𝑣, and Λ𝝅𝝅 by their

respective estimates under the assumption 𝐻0 ∶ 𝛽 = 𝛽0. AR(𝛽0) is 𝜒2(𝑘) distributed under the

Null assumption 𝛽 = 𝛽0 because ( ̂𝛿 − ̂𝜋𝛽0) is Normally distributed with variance Ψ̂(𝛽0).

A.3 Proof of Result 3.1

Proof. Suppose QML estimator is a consistent estimator of 𝛽0 and that individual 𝑖 is in group

1, i.e., 𝑖 ∈ O. Define the quasi-score and true-score

𝑠q𝑖 (𝛽) = ∇𝛽ℓq

𝑖 (𝛽)′ = 𝑑𝑖
𝑞𝜎 {𝑤𝑖 − Λ(𝑘𝑖)} (A.8)

𝑠𝑖(𝛽) = ∇𝛽ℓ(1)
𝑖 (𝛽)′ = 𝑑𝑖

𝑞𝜎𝑗
{𝑤𝑖 − Λ2(𝑘𝑖)} (A.9)

where 𝑑𝑖 = 𝜕𝑘𝑖/𝜕𝛽 = 𝑥𝑖2 − 𝑥𝑖1. By assumption, the true parameter 𝛽0 ∈ Β, where Β ⊂ ℝ
is compact, uniquely maximises 𝔼[ℓq(𝛽)] by Equation (3.1). Thus 𝔼(𝑠q𝑖 (𝛽0)|𝑥𝑖1, 𝑥𝑖2) = 0. By

Equation (A.8) it follows that 𝔼(𝑤𝑖|𝑥𝑖1, 𝑥𝑖2) = Λ(𝑘0
𝑖 ). However, the true maximum likelihood

defined in subsection 3.1 must also produce a consistent estimator of 𝛽0, and hence by Equation

(A.8)

𝔼[𝑠𝑖(𝛽0)|𝑥𝑖1, 𝑥𝑖2] = 𝑑𝑖
𝑞𝜎1

{𝔼(𝑤𝑖|𝑥𝑖1, 𝑥𝑖2) − Λ1(𝑘0
𝑖 )} = 0

However, as 𝔼(𝑤𝑖|𝑥𝑖1, 𝑥𝑖2) = Λ(𝑘0
𝑖 )

𝔼[𝑠𝑖(𝛽0)|𝑥𝑖1, 𝑥𝑖2] = 𝑑𝑖
𝑞𝜎1

{Λ(𝑘0
𝑖 ) − Λ1(𝑘0

𝑖 )} = 0
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as the true score must be valid. However, Λ(𝑘0
𝑖 ) ≠ Λ1(𝑘0

𝑖 ) in general and so 𝔼[𝑠𝑖(𝛽0)|𝑥𝑖1, 𝑥𝑖2] ≠
0, which is a contradiction. Hence, our assumption that 𝛽0 ∈ Β is the unique maximiser of

𝔼[ℓq

𝑖 (𝛽)] is false. A symmetric argument applies when individual 𝑖 is in Group 2. Therefore,

the QML estimator ̃𝛽 is inconsistent for 𝛽0. Rather, ̃𝛽 is consistent for some 𝛽∗ ≠ 𝛽0 where

𝔼[𝑠q𝑖 (𝛽∗)] = 0, i.e., plim( ̃𝛽) = 𝛽∗ ≠ 𝛽0.

A.4 Proof of Result 3.2

A.4.1 Heteroskedastic second-stage

Proof. I consider the case where each individual has a different variance. I focus on the two-

period case from which I infer issues with the general 𝑇 -period likelihood. I include one en-

dogenous regressor and one instrument. The model is

𝑥𝑖𝑡 = 𝑧𝑖𝑡𝜉 + 𝜙𝑖 + 𝑣𝑖𝑡

𝑦∗
𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝜌𝑣𝑖𝑡 + 𝜀𝑖𝑡

𝕍 [𝜀𝑖𝑡] = [𝑉 (𝑔𝑖𝛾)]2 > 0

where 𝑣𝑖𝑡 ∼ N(0, 𝜎2). I include a generated regressor ̂𝑣𝑖𝑡 in place of 𝑣𝑖𝑡 in the second-stage. I

implement a conditional likelihood approach to gain consistent estimators of 𝛽 or of reduced-

form parameter 𝛿𝑧 = 𝜉𝛽. Therefore, I assume the 𝜀(𝑖)
𝑖𝑡 are Logistically distributed with location

parameter 0 and scale parameter 𝑞[𝑉 (𝑔𝑖𝛾)], where 𝑞 = √3/𝜋. The log-likelihood of the two-step

procedure has form ℓ𝑖(⋅) = (ℓ(2)
𝑖 (⋅), ℓ(1)

𝑖 (⋅)), where ℓ(2)
𝑖 comes from the conditional logit log-

likelihood and ℓ(1)
𝑖 comes from the log-likelihood of a Normal distribution as I consider a linear

first-stage. Firstly, I consider the second-stage likelihood and how second-stage heteroskedas-

ticity harms estimation. The second-stage standard deviation of errors is 𝑉 (𝑔𝑖𝛾), which I use to

derive ℓ(2)
𝑖 ,

ℙ(𝑦𝑖𝑡 = 1|𝑥𝑖𝑡, 𝑣𝑖𝑡) = ℙ(𝑦∗
𝑖𝑡 > 0|𝑥𝑖𝑡, 𝑣𝑖𝑡)

= ℙ(
𝜀𝑖𝑡

𝑞𝑉 (𝑔𝑖𝑡𝛾) > −𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝜌𝑣𝑖𝑡
𝑞𝑉 (𝑔𝑖𝛾) |𝑥𝑖𝑡, 𝑣𝑖𝑡)

= 1 − Λ[
𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝜌𝑣𝑖𝑡

𝑞𝑉 (𝑔𝑖𝛾) ]

Where Λ(⋅) is the standard Logistic CDF with scale 1 and location 0. Letting x𝑖𝑡 = [𝑥𝑖𝑡, 𝑣𝑖𝑡] and

𝜷 = (𝛽, 𝜌)′, I now condition on 𝑛𝑖 = 𝑦𝑖1 + 𝑦𝑖2 = 1 to gain the following

ℙ(𝑦𝑖𝑡 = 1|x𝑖𝑡, 𝑔𝑖, 𝑛𝑖 = 1) = 1 − Λ[
(x𝑖1 − x𝑖2)𝜷

𝑞𝑉 (𝑔𝑖𝛾) ]
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And thus the second-stage log-likelihood of individual 𝑖 is

ℓ(2)
𝑖 (𝜷; 𝛾) = 𝑤𝑖 log {1 − Λ(ℎ𝑖)} + (1 − 𝑤𝑖)Λ(ℎ𝑖); ℎ𝑖 = (x𝑖1 − x𝑖2)𝜷

𝑉 (𝑔𝑖𝛾)

Where 𝑤𝑖 = 1 if 𝑦𝑖1 = 0 and 𝑦𝑖1 = 1 and 𝑤𝑖 = 0 if 𝑦𝑖1 = 1 and 𝑦𝑖1 = 0. Let d𝑖 = x𝑖1 − x𝑖2. I

differentiate to gain the log-score function

[∇𝜷ℓ(2)
𝑖 (𝜷; 𝛾)]′ = 𝑡(2)

𝑖 (𝜷; 𝛾) =
d′

𝑖
𝑞𝑉 (𝑔𝑖𝛾)

𝜆(ℎ𝑖)[𝑤𝑖 − Λ(ℎ𝑖)]
Λ(ℎ𝑖)[1 − Λ(ℎ𝑖)]

[∇𝛾ℓ(2)
𝑖 (𝜷; 𝛾)]′ = 𝑟(2)

𝑖 (𝜷; 𝛾) = [
𝜕ℎ𝑖
𝜕𝛾 ]

′ 𝜆(ℎ𝑖)[𝑤𝑖 − Λ(ℎ𝑖)]
Λ(ℎ𝑖)[1 − Λ(ℎ𝑖)]

=
𝑞d′

𝑖𝜷′𝑔′
𝑖 v(𝑔𝑖𝛾)

[𝑞𝑉 (𝑔𝑖𝛾)]2
𝜆(ℎ𝑖)[𝑤𝑖 − Λ(ℎ𝑖)]
Λ(ℎ𝑖)[1 − Λ(ℎ𝑖)]

Where v(𝑔𝑖𝛾) = 𝜕𝑉 (𝑔𝑖𝛾)/𝜕𝛾 . The full second-stage score is s(2)
𝑖 (𝜷; 𝛾) = (𝑡(2)

𝑖 (𝜷)′, 𝑟(2)
𝑖 (𝛾)′)′. The

full second-stage score has a generalised residual formulation in ̃𝑒(ℎ𝑖) = 𝑤𝑖 − Λ(ℎ𝑖) which has

0 expectation conditional on x𝑖 = [x𝑖1, x𝑖2] and 𝑔𝑖 because Λ(ℎ𝑖) by definition is the probability

that 𝑦𝑖1 = 0 and 𝑦𝑖2 = 1. It follows that 𝔼[s𝑖(𝜷; 𝛾)|x𝑖, 𝑔𝑖] = 0 and so 𝔼[𝑤𝑖|x𝑖, 𝑔𝑖] = Λ(ℎ𝑖). To

complete the proof, I consider the second-stage quasi-log-likelihood, denoted q(2)(𝜷), which

assumes constant variance across individuals, i.e., 𝑉 (𝑔𝑖𝛾) = 𝜎 > 0. Hence, the quasi-log-

likelihood score is

∇𝜷q𝑖(𝜷)′ = 𝑠(q)
𝑖 (𝜷) =

d′
𝑖

𝑞𝜎
𝜆(𝑘𝑖)[𝑤𝑖 − Λ(𝑘𝑖)]
Λ(𝑘𝑖)[1 − Λ(𝑘𝑖)]

Where 𝑘𝑖 = (x𝑖1 − x𝑖2)𝜷/𝑞𝜎 and d𝑖 = x𝑖1 − x𝑖2. I proceed as in A.3 – assume the quasi-MLE

is valid and so 𝔼[𝑤𝑖|x𝑖] = Λ(𝑘𝑖), where x𝑖 = [x𝑖1, x𝑖2]. However the true score must also be

valid and so this implies that Λ(𝑘𝑖) = Λ(ℎ𝑖), which is false in general and so is a contradiction.

Therefore, the QMLE does yield a consistent estimator of 𝜷0.

A.4.2 Heteroskedastic first-stage

Proof. I consider the following DGP for the one endogenous regressor and one instrument case

𝑦∗
𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑐𝑖 + 𝜌𝑣𝑖𝑡 + 𝜀𝑖𝑡

𝑥𝑖𝑡 = 𝑧𝑖𝑡𝜉 + 𝜙𝑖 + 𝑣(𝑖)
𝑖𝑡

𝕍 [𝑣(𝑖)
𝑖𝑡 ] = [𝑉 (𝑔𝑖𝛾)]2 > 0

where 𝜀𝑖𝑡 is a Logistic distribution with location 0 and constant scale parameter 𝑞𝜎2 and 𝑣(𝑖)
𝑖𝑡 is a

Normal distribution with mean 0 and variance [𝑉 (𝑔𝑖𝛾)]2. As before, I consider the log-likelihood
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of the two-step procedure for individual 𝑖 as ℓ𝑖(𝜷; 𝛾) = (ℓ(2)
𝑖 (𝜷)′, ℓ(1)

𝑖 (𝜉; 𝛾)′)′. Here ℓ(2)
𝑖 (𝜷; 𝛾)

is the log-likelihood of the second-stage for individual 𝑖 and comes from the conditional logit

likelihood, while ℓ(1)
𝑖 (𝜉; 𝛾) is the log-likelihood of the first-stage for individual 𝑖 and comes from

the log-likelihood of a Normal distribution. When heteroskedasticity is present, quasi-maximum

likelihood estimation of the linear first-stage is consistent for 𝜉 although standard errors are

inconsistent (Martin et al., 2012). In this case, the second-stage quasi-log-likelihood coincides

with the true second-stage log-likelihood. To spell this out, I have the following expressions for

the quasi- and true-log-likelihood for the first-stage

q
(1)
𝑖 (𝜉) = − ln 2𝜋 − ln 𝜎2

1 − 1
𝜎2

1

2

∑
𝑡=1

(𝑥𝑖𝑡 − 𝑧𝑖𝑡𝜉 − 𝜙𝑖)2

ℓ(1)
𝑖 (𝜉, 𝛾) = − ln 2𝜋 − ln [𝑉 (𝑔𝑖𝛾)]2 − 1

[𝑉 (𝑔𝑖𝛾)]2

2

∑
𝑡=1

(𝑥𝑖𝑡 − 𝑧𝑖𝑡𝜉 − 𝜙𝑖)2

Where q
(1)
𝑖 and ℓ(1)

𝑖 are the quasi and true log-likelihoods of the first-stage, respectively. For

the second-stage,

ℓ(2)
𝑖 (𝜷) = 𝑤𝑖 log {1 − Λ(ℎ𝑖)} + (1 − 𝑤𝑖){Λ(ℎ𝑖)}, ℎ𝑖 = (x𝑖1 − x𝑖2)𝜷

𝑞𝜎2

is the true log-likelihood of the first-stage. I expand ℎ𝑖 as

ℎ𝑖 = (𝑥𝑖1 − 𝑥𝑖2)𝛽 + (𝑣𝑖1 − 𝑣𝑖2)𝜌
𝑞𝜎2

(A.10)

I use a generated regressor ̂𝑣𝑖𝑡 = 𝑥𝑖𝑡 − ̂𝜉𝑧𝑖𝑡 − ̂𝜙𝑖 in place of 𝑣𝑖𝑡. As already stated, the first-stage

quasi-maximum likelihood yields consistent estimates of 𝜉 and 𝜙, and thus ̂𝑣𝑖𝑡 is a consistent

estimator of ̂𝑣𝑖𝑡. To be precise, I compare the two log-likelihoods

True: ℓ𝑖(𝜷; 𝛾, 𝜉) = (ℓ(2)
𝑖 (𝜷), ℓ(1)

𝑖 (𝜉, 𝛾))
Quasi: q𝑖(𝜷; 𝜉) = (ℓ(2)

𝑖 (𝜷),q(1)
𝑖 (𝜉))

To distinguish between true and QMLE, I call first-stage residuals computed from QMLE ̃𝑣𝑖𝑡

while first-stage residuals computed from the true likelihood are ̂𝑣𝑖𝑡. To complete the proof, I

show that if 𝜷0 ∈ Β, where Β is a compact subset of ℝ2, is a unique maximiser of the expected

true log-likelihood then 𝜷0 is the unique maximiser of the expected quasi log-likelihood. This

would imply that plim(�̃�) = 𝜷0 where �̃� is the estimator obtained from QMLE; that is, �̃� is a

consistent estimator of the true 𝜷0.
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Suppose 𝜷0 = arg max𝜷∈Β{𝔼[ℓ𝑖(𝜷; 𝛾, 𝜉)|𝛾 = ̂𝛾, 𝜉 = ̂𝜉], where ̂𝜉 and ̂𝛾 are consistent and

unbiased estimators of 𝛾 and 𝜉 derived from the first-stage. This is equivalent to saying 𝜷0

is the unique maximiser of 𝔼[ℓ(2)
𝑖 (𝜷)| ̂𝛾, ̂𝜉] after estimating the first-stage. It then follows that

𝔼[s(2)
𝑖 (𝜷0)] = 0 where s(2)

𝑖 (𝜷) is the true score of the second-stage, defined as

s(2)
𝑖 (𝜷) =

d′
𝑖

𝑞𝜎
𝜆(ℎ𝑖)(𝑤𝑖 − Λ(ℎ𝑖)
Λ(ℎ𝑖)(1 − Λ(ℎ𝑖)

where d𝑖 = 𝜕ℎ𝑖/𝜕𝜷. Given our assumption that 𝜷0 is the unique maximiser of the true log-

likelihood, it follows that

𝔼[𝑠(2)
𝑖 (𝜷0)|d𝑖] = 0 ⟹ 𝔼[𝑤𝑖|d𝑖] = 𝔼[Λ(ℎ̂0

𝑖 )|d𝑖] (A.11)

where ℎ̂0
𝑖 is equation (A.10) evaluated at 𝜷 = 𝜷0 and 𝑣𝑖𝑡 = ̂𝑣𝑖𝑡 for 𝑡 = 1, 2. Now consider

𝔼[r(2)
𝑖 (𝜷0)|d𝑖], where r(2)

𝑖 (𝜷) is the quasi second-stage score defined as

r(2)
𝑖 (𝜷) =

d′
𝑖

𝑞𝜎
𝜆(ℎ𝑖)(𝑤𝑖 − Λ(ℎ𝑖))
Λ(ℎ𝑖)(1 − Λ(ℎ𝑖)

with all variables and constants defined as before. I have

𝔼[r(2)
𝑖 (𝜷0)|d𝑖] = 𝑀(�̃�0

𝑖 ){𝔼[𝑤𝑖 − Λ(�̃�0
𝑖 )|d𝑖]}; 𝑀(�̃�0

𝑖 ) =
d′

𝑖 𝜆(ℎ̃0
𝑖 )

𝑞𝜎Λ(ℎ̃0
𝑖 )[1 − Λ(ℎ̃0

𝑖 )]

where ℎ̃0
𝑖 is Equation (A.10) evaluated at 𝜷 = 𝜷0 and 𝑣𝑖𝑡 = ̃𝑣𝑖𝑡 for 𝑡 = 1, 2, denoting the fitted

residuals from QMLE on the first-stage. As stated before, ̃𝑣𝑖𝑡 is a consistent estimator of 𝑣𝑖𝑡 and

thus 𝔼[Λ(ℎ̃0
𝑖 )] = 𝔼[Λ(�̂�0

𝑖 )]. Expression (A.11) yields

𝔼[r(2)
𝑖 (𝜷0)|d𝑖] = 𝑀(�̃�0

𝑖 ){𝔼[𝑤𝑖|d𝑖] − 𝔼[Λ(�̃�0
𝑖 )|d𝑖]} = 𝑀(�̃�0

𝑖 ){𝔼[Λ(ℎ̂0
𝑖 )|d𝑖] − 𝔼[Λ(�̃�0

𝑖 )|d𝑖]} = 0

which implies that 𝜷0 is a unique maximiser of the quasi log-likelihood. Therefore, the quasi-

maximum likelihood estimator �̃� is a consistent estimator of the true parameter vector 𝜷0, i.e.,

plim(�̃�) = 𝜷0.

A.5 Delta Method For AME Standard Errors

Suppose that √𝑛(�̂�𝑛 − 𝜽0) ∼ N(0, Ω) where �̂�𝑛 is a sequence of random variables and Ω is the

variance-covariance matrix of �̂�𝑛. I derive the distribution of √𝑛(𝑎(�̂�𝑛) − 𝑎(𝜽0)), where 𝑦(⋅) is

some function. Consider the mean-value expansion

𝑎(�̂�𝑛) = 𝑎(𝜽0) + 𝑎′(�̃�)(�̂�𝑛 − 𝜽0)
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where �̃� lies between �̂�𝑛 and 𝜽0. Rearranging and multiplying by √𝑛

√𝑛(𝑎(�̂�𝑛) − 𝑎(𝜽0)) = 𝑎′(�̃�)√𝑛(�̂�𝑛 − 𝜽0)

Furthermore, �̃� → 𝜽0 since �̂�𝑛 → 𝜽0 and |�̃� − 𝜽0| < |�̂�𝑛 − 𝜽0|. Hence

√𝑛(𝑎(�̂�𝑛) − 𝑎(𝜽0)) ≈ 𝑎′(�̂�𝑛)√𝑛(�̂�𝑛 − 𝜽0)

in the limit 𝑛 → ∞. Therefore by Slutsky’s theorem √𝑛(𝑎(�̂�𝑛) − 𝑎(𝜽0)) ∼ N(0, [𝑎′(�̂�𝑛)]2Ω).

Applied to AMEs

𝑎(�̂�) = ̄𝑑𝑗(x) =
̂𝜃𝑗

𝑛𝑇

𝑛

∑
𝑖=1

𝑇

∑
𝑡=1

𝑔(x𝑖𝑡�̂�), 𝑎′(�̂�) = ∇𝜃𝑗
̄𝑑𝑗(x) =

̂𝜃𝑗
𝑛𝑇

𝑛

∑
𝑖=1

𝑇

∑
𝑡=1

𝑥𝑖𝑡,𝑗𝑔′(x𝑖𝑡�̂�)
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B Appendix B

B.1 Panel Inference

Table 9: Size Comparison (%) – 𝑣𝑖𝑡 ∼ N(0, 2), 𝜀𝑖𝑡 ∼ L(0, √3
𝜋 )

𝜇 = 0.01 𝜇 = 3 𝜇 = 500
𝜌 0.2 0.99 0.2 0.99 0.2 0.99

Size 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Wald( ̂𝛽) 9.09 15.11 18.45 26.57 9.63 15.95 18.61 26.34 5.21 10.55 7.88 14.33
𝐴𝑅(𝛽0) 4.63 9.59 4.77 9.52 5.17 10.35 4.60 9.67 5.04 10.23 4.58 9.67

Note. I test the hypothesis 𝐻0 ∶ 𝛽0 = 0.5 against 𝐻1 ∶ 𝛽0 ≠ 0.5. The number of simulations is 𝑁 = 10, 000 and

the panel dimensions are 𝑛 = 100 and 𝑇 = 10. AR(𝛽0) rejection rates are the correct size while standard Wald( ̂𝛽)
significantly over-reject even in what is deemed extremely strong instruments, 𝜇 = 500.

Table 10: Size Comparison (%) – LPM Models, 𝜀𝑖𝑡 ∼ N(0, √3
𝜋 )

𝜇 = 0.01 𝜇 = 3 𝜇 = 10
𝜌 0.2 0.99 0.2 0.99 0.2 0.99

Size 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Wald( ̂𝛽) 91.39 92.69 91.39 92.72 91.28 92.72 91.28 92.75 91.21 92.79 91.27 92.76
𝐴𝑅(𝛽0) 5.05 10.24 5.07 10.25 5.09 10.33 5.10 10.32 5.24 10.56 5.24 10.56

Note. I test the hypothesis 𝐻0 ∶ 𝛽0 = 0.5 against 𝐻1 ∶ 𝛽0 ≠ 0.5. The number of simulations is 𝑁 = 10, 000 and

the panel dimensions are 𝑛 = 100 and 𝑇 = 10. AR(𝛽0) rejection rates are the correct size while standard Wald( ̂𝛽)
significantly over-reject even in what is deemed strong instruments, 𝜇 = 10. I choose 𝜇 = 10 for strong instruments

since this is commonly cited as the approximate cutoff for strong instruments in linear models.

B.2 AME Individual Heteroskedasticity

I simulate the individual heteroskedasticity model from Harvey (1976)

𝑦∗
𝑖 = 𝑥𝑖𝛽 + 𝑣𝑖𝜌 + 𝜀𝑖

𝑥𝑖 = 𝑧𝑖𝜉 + 𝑣𝑖

𝜀𝑖 ∼ L(0, 𝑞 exp(ℎ𝑖𝛾))
𝑣𝑖 ∼ N(0, 1)

(B.1)
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where 𝑧𝑖 ∼ N(0, 1). Equations (B.1) and (B.2) represent first- and second-stage heteroskedastic-

tity, respectively. I set 𝛽 = 0.5, 𝛾 = 1, 𝜉 according to the concentration parameter 𝜇 ∈ {1, 500}
described in Section 2, and 𝜌 ∈ {0.2, 0.99} to denote low and high endogeneity respectively.

Recall that 𝑞 = √3/𝜋 is a constant. The sample size for each simulation is 𝑛 = 1, 000 and I

conduct 𝑁 = 10, 000 simulations. In each simulation I calculate the true marginal effect via

Equation (4.3) to the model. Vertical black bars represent the mean true AME across the 10, 000
simulations.

Figure 5: AME Estimator Individual Heteroskedasticity (𝜇 = 500, 𝜌 = 0.99)

(a) ℎ𝑖 ∼ U(−5, 5) (b) ℎ𝑖 ∼ U(−15, 15)

(c) ℎ𝑖 ∼ N(0, 42) (d) ℎ𝑖 ∼ N(0, 102)

True – Quasi logit – Quasi LPM –

The individual heteroskedasticity simulations demonstrate that quasi-AMEs are consistent

up until some critical variance in the explanatory variables determining the individual’s error

variance, denoted ℎ𝑖. Consistency occurs despite the stark distributional differences between

the true AME estimator and the quasi-AME estimator. Increasing the variance of the ℎ𝑖 means
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larger possible observed ℎ𝑖’s. Marginal increases in ℎ𝑖 when the ℎ𝑖 is already large increase the

individuals error variance more than the same increase when ℎ𝑖 is low because of the exponential

function. Increasing the variance of ℎ𝑖 yields greater error variance separation for individuals

in the higher regions of the ℎ𝑖’s than lower regions of the ℎ𝑖’s, producing a long right tail with

low density, where separation is high, and left peak with high density, where the separation

is low. These dynamics explain the distributional qualities of the true AMEs in Figure 5 and

subsequently the eventual inconsistency of quasi-AMEs once the variance of ℎ𝑖 reaches some

critical value.
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B.3 Summary Statistics for Applications

Table 11: Civil War Onset (𝑛 = 1454, 1971–2006)

Mean Std. Dev. Min. Max.

Intra-state conflict onset 0.06 0.24 0 1

US Wheat Aid (’000s mt tns) 21.08 59.42 0 791.60

Lagged US Wheat Production (’000s mt tns) 59187 8754 36787 75813

Ave. US food aid probability 0.39 0.33 0 1

Peace Duration (yrs) 11.59 9.48 1 46

Instrument 22936 19924 0 75813

Note. An observation is a country-year pair. Country-year pairs without valid peace duration realisa-

tions or without possible transitions to intra-state conflict in the next period are omitted, leaving 1454

observations. The instrument is Lagged US Wheat Production interacted with the average probability of

US Food Aid.

Table 12: Civil War Incidence (𝑛 = 4089, 1971–2006)

Mean Std. Dev. Min. Max.

Conflicts (+25 deaths) 0.22 0.41 0 1

US Wheat Aid (’000s mt tns) 27.61 116.61 0 1958

Lagged US Wheat Production (’000s mt tns) 59053 9176 36787 75813

Ave. US food aid probability 0.37 0.31 0 1

Instrument 22040 18950 0 75813

Controls

Real US GDP per capita 3.86 3.23 0 10.67

Oil Price 16.07 17.14 0 100.54

US Democratic President 0.13 0.26 0 1

Note. An observation is a country-year pair. The instrument is Lagged US Wheat Production interacted

with the average probability of US Food Aid. All controls are interacted with the average probability of

receiving US food aid.

Page 49



B APPENDIX B Inference and Estimation in Panel BDV Models

B.4 Parameter Estimates – Nunn and Qian (2014)

Table 13: Parameter Estimates – Nunn and Qian (2014)

(a) Onset – Logit Time Hazard Model

Spec. (1) Spec. (2) Spec. (3)

�̂� 1.21 1.38 1.34
̂𝛽 1.32 −0.81 −0.27
̂𝛿 1.59 −1.12 −0.30

(b) Incidence – LPM

C. FE Most Full

�̂� 2.27 3.30 3.58
̂𝛽 3.64 3.43 2.99
̂𝛿 8.29 11.33 10.71

Note. Results in the table are multiplied by 103 for �̂� and ̂𝛽 and 106 for ̂𝛿 and 𝑟( ̂𝛿, 𝛽0) for brevity.
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